Nav: Home

One crop, two ways, multiple benefits

January 06, 2016

Nitrogen fixation is one of the best examples of cooperation in nature. Soil microbes - naturally occurring bacteria in the soil - work with plants to pull nitrogen from the air. They turn the nitrogen into a form the plant is able to use. In return, the plant lets the microbes eat some of the sugars it makes.

Faba beans (also called fava beans) are one example of plants that work with soil microbes in this manner. These dried beans are part of a food group known as pulses. Their ability to work with microbes to fix nitrogen is a highly desired trait. It means growers can apply less nitrogen fertilizer to their fields.*

Newton Lupwayi and his research team work with legumes and pulses in Alberta, Canada. Alberta has terrific conditions for pulse crops: good soil (and microbes), good average temperatures, and good average rainfall. The team recently published research about the effects of using faba beans in two different ways to increase soil health in Canadian soils.

Says Lupwayi, "Pulse crops are grown in the Canadian prairies because of their agronomic, economic and environmental benefits. They are recommended to be grown once every four years."

Typically, organic growers plant pulse crops solely for their nitrogen-fixing ability and use them as green manure. In this process, there is no sale from the field's pulse crop. The crop is seeded as usual, but cut down after the flowers blossom and before seed growth begins. The leafy green part of the plant remains on top of the soil as cover or lightly tilled into the soil. The following year, growers plant a non-legume crop, such as wheat. This second crop benefits from the increased nitrogen in the soil.

The research compared this green manure technique to a traditional program of growing the beans to maturity for harvest and sale. Pulse crops grown to the seed-harvest stage created more nitrogen in the soil. This is because their roots were working in the soil longer and had more time to fix nitrogen.

These findings suggest growers should adjust their use of nitrogen in the years after a pulse crop. "Residues of pulse crops grown to the seed-harvest stage may not release much nitrogen in the first year after harvest, but they do release nitrogen for several more years," says Lupwayi. "Right now, most growers are not taking that extra release into account. Fertilizer recommendations should take the slow-release nitrogen into account to avoid applying excess nitrogen."

This research has multiple benefits: saving money on the cost of fertilizer, and reducing the chances that excess nitrogen fertilizer will run off into nearby water bodies. Excess nitrogen runoff can contribute to water pollution, an environmental concern.

In addition, says Lapwayi, "Growing a different crop from one year to another can break the pathogen cycle. This reduces the cost of disease-control chemicals, and is especially important to organic growers."

The study also found pulse crops increase the amount of carbon in soil

"Soil organic carbon is very important for soil health and quality," says Lupawayi. "It affects soil physical, chemical and biological properties. It improves soil quality."
-end-
This research was funded by a grant from Alberta Crop Industry Development Fund (ACIDF) and Alberta Pulse Growers (APG). It was published in Soil Science Society of America Journal.

The United Nations Food and Agriculture Organization declared 2016 the International Year of Pulses (IYP). In celebration, the Crop Science Society of America (CSSA) created a web page for the public about pulses, http://www.crops.org/iyp. Special tabs for the public include K-12 Education, Beans in the News, Grow Your Own, and Delicious Ideas. CSSA has also compiled links to various recipes, so you can increase your consumption of pulses.

CSSA will release more information about pulses during the 2016 IYP celebration.

*(Note to home gardeners: Always have your soil tested regularly to make sure your soil actually needs the fertilizer you are applying. You could save money - and the environment - by doing so. Contact your county extension agent for information about soil testing.)

American Society of Agronomy

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
More Nitrogen News and Nitrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...