Nav: Home

Lab researcher helps team that may have a key solution to reducing carbon dioxide emissions

January 06, 2016

Meeting the Paris Climate Agreement goal of limiting the increase in the global average temperature to well below two degrees Celsius compared to pre-industrial levels will require increased use of renewable energy and reducing the CO2 intensity of fossil energy use.

The intermittency of when the wind blows and when the sun shines is one of the biggest challenges impeding the widespread integration of renewable energy into electric grids, while the cost of capturing CO2 and storing it permanently underground is a big challenge for decarbonizing fossil energy.

However, researchers from Lawrence Livermore National Laboratory, Ohio State University, University of Minnesota and TerraCOH, Inc. think they've found an answer to both of these problems with a large-scale system that incorporates CO2 sequestration and energy storage.

The team's paper, published in the December issue of Mechanical Engineering magazine, describes a subsurface energy system that could tap geothermal energy, store energy from above-ground sources, and dispatch it to the grid throughout the year like a massive underground battery, while at the same time storing CO2 from fossil-fuel power plants.

"If you want to store the large quantities of renewable energy necessary to balance seasonal supply-demand mismatches and store it efficiently, we believe the best way to do that is underground," said the paper's author, Thomas Buscheck, leader of the Lab's Geochemical, Hydrological and Environmental Sciences Group. "We believe this is a cost-effective way to store the energy long enough so it can be used later."

Buscheck's team's approach involves injecting liquid-like CO2 into underground reservoirs located in sedimentary rock, creating a pressurized plume that pushes brine up production wells to the surface. The brine could be heated and reinjected into the reservoir to store thermal energy, and the resulting pressurized CO2 would act as a shock absorber, enabling the system to be charged or discharged depending on supply and demand. When there's insufficient renewable energy, the pressurized CO2 and brine could be released and converted to power.

"Storing such vast quantities of CO2 creates so much pressure. This is the biggest challenge for keeping it permanently underground, but it is manageable," Buscheck said. "To make sure we don't have too much pressure, we can divert some of the produced brine to generate water through desalination. Then, if we tap into the remaining pressure, we can recharge the system selectively and put energy into our storage system when there's excess and deliver it when it's needed."

According to the computer models, the amount of CO2 that could be stored underground by the system would be at least 4 million tons per year over 30 years, the equivalent of the CO2 impact of a 600 megawatt coal plant.

Seven years in development, the concept, which combines Multi-Fluid Geo-Energy Systems developed at the Lab and Ohio State University with CO2 Plume Geothermal (CPG) from researchers at the University of Minnesota, is drawing interest from industry, Buscheck said.
-end-
The Department of Energy, Office of Energy Efficiency and Renewable Energy's Geothermal Technologies Office funded the study.

For more information, go to the DOE website. http://energy.gov/eere/office-energy-efficiency-renewable-energy

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

DOE/Lawrence Livermore National Laboratory

Related Renewable Energy Articles:

Illuminating the future of renewable energy
A new chemical compound created by researchers at West Virginia University is lighting the way for renewable energy.
Using fiber optics to advance safe and renewable energy
Fiber optic cables, it turns out, can be incredibly useful scientific sensors.
Renewable energy developments threaten biodiverse areas
More than 2000 renewable energy facilities are built in areas of environmental significance and threaten the natural habitats of plant and animal species across the globe.
Could water solve the renewable energy storage challenge?
Seasonally pumped hydropower storage could provide an affordable way to store renewable energy over the long-term, filling a much needed gap to support the transition to renewable energy, according to a new study from IIASA scientists.
Switching to renewable energy could save thousands of lives in Africa
New research from Harvard University and the University of Leicester finds that if Africa chooses a future powered by fossil fuels, nearly 50,000 people could die prematurely each year from fossil fuel emissions by 2030, mostly in South Africa, Nigeria and Malawi.
Scientists take strides towards entirely renewable energy
Researchers have made a major discovery that will make it immeasurably easier for people (or super-computers) to search for an elusive 'green bullet' catalyst that could ultimately provide entirely renewable energy.
Where to install renewable energy in US to achieve greatest benefits
A new Harvard study shows that to achieve the biggest improvements in public health and the greatest benefits from renewable energy, wind turbines should be installed in the Upper Midwest and solar power should be installed in the Great Lakes and Mid-Atlantic regions.
Croissant making inspires renewable energy solution
The art of croissant making has inspired researchers from Queen Mary University of London to find a solution to a sustainable energy problem.
Are we underestimating the benefits of investing in renewable energy?
Scientists have estimated the emissions intensity of carbon dioxide and other air pollutants from a major electricity distributor and highlighted key consequences - essential information for policymakers shaping decisions to reduce electricity system emissions.
Lighting the path to renewable energy
Professor Mahesh Bandi of Okinawa Institute of Science and Technology Graduate University (OIST) has co-developed a novel, standardized way of quantifying and comparing these variations in solar power.
More Renewable Energy News and Renewable Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.