Nav: Home

New strategy aims to enhance efficacy and safety of bone repair treatment

January 06, 2016

Philadelphia, PA, January 6, 2016 - Bone morphogenetic protein-2 (BMP2) is used clinically to promote bone repair. However, the high BMP2 concentrations required to stimulate bone growth in humans may produce life-threatening adverse effects such as cervical swelling in spinal fusion procedures, a problem that prompted an FDA warning in 2008. Now, a team of clinicians and engineers has shown that adding the protein kinase C-binding protein NELL-1 (Nel-like molecule-1) to BMP2 therapy may allow clinicians to achieve better results at lower - and safer - BMP2 doses. Their findings are reported in The American Journal of Pathology.

BMP2 is an FDA-approved osteoinductive growth factor used for spinal fusions and treatment of skeletal defects. An important limitation of BMP2 treatment is the formation of abnormal, adipose-filled, poor-quality bone that extends beyond the proper boundaries of the defect. Adverse effects, such as cervical swelling, ectopic bone formation, osteoclastogenesis, and inconsistent bone formation, may occur at high dosages. Therefore, the practical goals of treatment are to produce good-quality bone (osteogenesis) and to inhibit production of the abnormal adipose cell intruders (adipogenesis).

"In this study, we show both NELL-1 inhibition of BMP2-induced adipogenesis and NELL-1 + BMP2 synergy in bone formation. Overall, NELL-1 together with BMP2 forms bone of better quality than BMP2 alone. The combination treatment of NELL-1 with BMP2 may be particularly valuable in clinical scenarios in which bone regeneration is impaired, such as with steroid treatment or osteoporosis," noted Dr. Chia Soo, MD, FACS, Vice Chair in Research in the Division of Plastic and Reconstructive Surgery and the Research Director of the Operation Mend of the UCLA School of Medicine.

Investigators evaluated NELL-1 and BMP2 in vitro and in vivo in animals. Using a femoral segmental defect model, in which a section of a rat's femur is surgically removed, the investigators studied bone regrowth 8 weeks after surgery.

Histological analysis of untreated controls showed fibrous tissue growth within the surgical cavity, with no connection formed between the surgically-separated ends of the femoral bone and no evidence of trabecular bone formation (the connective tissue strands that provide a framework for regeneration). With BMP2 treatment, the fractured ends became connected, but the newly formed bone contained adipose tissue interspersed with sparse trabecular bone, which grew beyond the original margins. In contrast, the combination of NELL-1 + BMP2 produced tightly woven trabecular bone that remained largely within the area of the defect.

Other tests confirmed that adipose cells were evident in the BMP2-treated cavities but not in those administered NELL-1 + BMP2. NELL-1 also inhibited BMP2-stimulated adipogenesis in vitro from progenitor cells of multiple species. The investigators used a variety of advanced techniques to show that NELL-1 + BMP2 significantly increased all markers of bone growth relative to either treatment alone, including tests performed on human bone marrow stromal cells. The authors suggest that NELL-1 encourages cells early in their development to become osteogenic, rather than adipogenic.

NELL-1 regulation of BMP2-induced osteogenesis and adipogenesis may occur through activation of canonical (β-catenin?dependent) Wnt signaling, explained Aaron W. James, MD, Bone Pathologist in the Department of Pathology of the UCLA School of Medicine, who added that, in general, increased Wnt signaling steers cells toward osteogenesis rather than adipogenesis. (Wnt signaling via Wnt proteins allows cells to communicate and is thought to play a role in the regulation of mesenchymal stem cell maintenance and differentiation during bone development and maturity.)

"The ability of NELL-1 to activate Wnt signaling suggests potential utility in conditions such as osteoporosis, where the balance between osteogenesis versus adipogenesis and the balance between bone deposition versus resorption is perturbed to favor bone loss," said Dr. Kang Ting, DMD, DMedSc, Professor and Chair in the Division of Growth and Development of the UCLA School of Dentistry, and Professor in UCLA's Departments of Bioengineering and Orthopaedic Surgery. He added that these findings uncover new treatment possibilities for osteoporosis, such as the use of antibodies against endogenous Wnt pathway inhibitors, two of which are currently in Phase 3 clinical trials.

Treatments to promote bone development may be valuable for those with weakened bones, whether due to osteoporosis, cancer, medications, surgery, or trauma. Recombinant BMP is FDA-approved for use in limited patient populations such as patients with degenerative disc disease needing lumbar spine fusion, stabilized acute open tibial shaft fractures, and inability to undergo a successful autograft. In future work, the investigators hope their findings will enable a reduction of the currently-required clinical dose of BMP2 and, subsequently, result in fewer adverse events.

Elsevier Health Sciences

Related Osteoporosis Articles:

New pharmaceutical target reverses osteoporosis in mice
Biomedical engineers at Duke University have discovered that an adenosine receptor called A2B can be pharmaceutically activated to reverse bone degradation caused by osteoporosis in mouse models of the disease.
A link between mitochondrial damage and osteoporosis
In healthy people, a tightly controlled process balances out the activity of osteoblasts, which build bone, and osteoclasts, which break it down.
Many stroke patients not screened for osteoporosis, despite known risks
Many stroke survivors have an increased risk of osteoporosis, falls or breaks when compared to healthy people.
Many postmenopausal women do not receive treatment for osteoporosis
The benefits of treating osteoporosis in postmenopausal women outweigh the perceived risks, according to a Clinical Practice Guideline issued today by the Endocrine Society.
A new 'atlas' of genetic influences on osteoporosis
A ground-breaking new study led by researchers from the Lady Davis Institute (LDI) at the Jewish General Hospital (JGH) has succeeded in compiling an atlas of genetic factors associated with estimated bone mineral density (BMD), one of the most clinically relevant factors in diagnosing osteoporosis.
New recommendations for the conduct of economic evaluations in osteoporosis
An expert working group has established recommendations for the design and conduct of economic evaluations in osteoporosis, as well as guidance for reporting these evaluations.
From receptor structure to new osteoporosis drugs
Researchers at the University of Zurich have determined the three-dimensional structure of a receptor that controls the release of calcium from bones.
How a Mediterranean diet could reduce osteoporosis
Eating a Mediterranean-type diet could reduce bone loss in people with osteoporosis -- according to new research from the University of East Anglia.
Osteoporosis drug may benefit heart health
The osteoporosis drug alendronate was linked with a reduced risk of cardiovascular death, heart attack, and stroke in a Journal of Bone and Mineral Research study of patients with hip fractures.
New treatment for osteoporosis provides better protection against fractures
A new treatment for osteoporosis provides major improvements in bone density and more effective protection against fractures than the current standard treatment.
More Osteoporosis News and Osteoporosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at