Nav: Home

Investigators identify optimal conditions for growth of Legionella bacteria

January 06, 2017

Washington, DC - January 6, 2017 - The bacteria that cause Legionnaire's disease grow well in warm tap water installations with ample dissolved organic matter--conditions that support the growth of biofilms. The research is published January 6th in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

The team of Dutch scientists conducting the research was motivated by large outbreaks of Legionnaires' disease to find out what conditions favored growth of the responsible bacterium, Legionella pneumophila, on surfaces exposed to drinking water, said first author Dick van der Kooij, PhD, recently retired as Principal Microbiologist at KWR Watercycle Research Institute, Nieuwegein, the Netherlands, where this research was conducted.

In the study, the investigators developed a model system that enabled measurement of biofilm formation and growth of Legionella exposed to drinking water without disinfectant, under controlled hydraulic conditions. They used this system to compare a water supply system with a very low concentration of dissolved organic matter with a water supply with a high concentration.

"Drinking water prepared from aerobic groundwater with a low concentration of dissolved natural organic matter induced a very low biofilm concentration that did not support growth of L. pneumophila," said van der Kooij. "Drinking water from two other sources with higher concentrations of organic matter induced higher biofilm concentrations that supported Legionella growth." Legionella bacteria grew exponentially in relation to biofilm concentration, said van der Kooij. Below a threshold concentration of biofilm, Legionella did not multiply.

"Our research demonstrated that microgram-per-liter concentrations of biodegradable compounds in warm drinking water can induce sufficient bacterial growth on surfaces for proliferation of the amoebae that support growth of Legionella," said van der Kooij. "Heating the water increases the concentration of biodegradable compounds, thereby promoting biofilm formation."

Young biofilms support a high concentration of bacterial species that serve as prey for amoebae, and the latter, in turn, serve as hosts for L. pneumophila, said van der Kooij. The amoebae are important because they supply amino acids required by the Legionella.

Legionella pneumophila cause more than 10,000 cases of Legionnaires' disease annually, worldwide, including most of the drinking water associated outbreaks in the US. Legionnaires' disease is a life-threatening form of pneumonia that was first identified in an outbreak at a convention of members of the American Legion, in Philadelphia, in 1976. The organism is common in drinking water systems in hotels, hospitals, and homes.
-end-


American Society for Microbiology

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
A chink in bacteria's armor
Scientists have untangled the structure of a recently discovered bacterial wall-building protein, found in nearly all bacteria.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.