Nav: Home

Finding a new way to fight late-stage sepsis

January 06, 2020

COLUMBUS, Ohio - Researchers have developed a way to prop up a struggling immune system to enable its fight against sepsis, a deadly condition resulting from the body's extreme reaction to infection.

The scientists used nanotechnology to transform donated healthy immune cells into a drug with enhanced power to kill bacteria.

In experiments treating mice with sepsis, the engineered immune cells eliminated bacteria in blood and major organs, dramatically improving survival rates.

This work focuses on a treatment for late-stage sepsis, when the immune system is compromised and unable to clear invading bacteria. The scientists are collaborating with clinicians specializing in sepsis treatment to accelerate the drug-development process.

"Sepsis remains the leading cause of death in hospitals. There hasn't been an effective treatment for late-stage sepsis for a long time. We're thinking this cell therapy can help patients who get to the late stage of sepsis," said Yizhou Dong, senior author and associate professor of pharmaceutics and pharmacology at The Ohio State University. "For translation in the clinic, we believe this could be used in combination with current intensive-care treatment for sepsis patients."

The study is published today (Jan. 6, 2020) in Nature Nanotechnology.

Sepsis itself is not an infection - it's a life-threatening systemic response to infection that can lead to tissue damage, organ failure and death, according to The Centers for Disease Control and Prevention. The CDC estimates that 1.7 million adults in the United States develop sepsis each year, and one in three patients who die in a hospital have sepsis.

This work combined two primary types of technology: using vitamins as the main component in making lipid nanoparticles, and using those nanoparticles to capitalize on natural cell processes in the creation of a new antibacterial drug.

Cells called macrophages are one of the first responders in the immune system, with the job of "eating" invading pathogens. However, in patients with sepsis, the number of macrophages and other immune cells are lower than normal and they don't function as they should.

In this study, Dong and colleagues collected monocytes from the bone marrow of healthy mice and cultured them in conditions that transformed them into macrophages. (Monocytes are white blood cells that are able to differentiate into other types of immune cells.)

The lab also developed vitamin-based nanoparticles that were especially good at delivering messenger RNA, molecules that translate genetic information into functional proteins.

The scientists, who specialize in messenger RNA for therapeutic purposes, constructed a messenger RNA encoding an antimicrobial peptide and a signal protein. The signal protein enabled the specific accumulation of the antimicrobial peptide in internal macrophage structures called lysosomes, the key location for bacteria-killing activities.

From here, researchers delivered the nanoparticles loaded with that messenger RNA into the macrophages they had produced with donor monocytes, and let the cells take it from there to "manufacture" a new therapy.

"Macrophages have antibacterial activity naturally. So if we add the additional antibacterial peptide into the cell, those antibacterial peptides can further enhance the antibacterial activity and help the whole macrophage clear bacteria," Dong said.

After seeing promising results in cell tests, the researchers administered the cell therapy to mice. The mouse models of sepsis in this study were infected with multidrug-resistant Staphylococcus aureus and E. coli and their immune systems were suppressed.

Each treatment consisted of about 4 million engineered macrophages. Controls for comparison included ordinary macrophages and a placebo. Compared to controls, the treatment resulted in a significant reduction in bacteria in the blood after 24 hours - and for those with lingering bacteria in the blood, a second treatment cleared them away.

Dong considers the lipid nanoparticle delivery of messenger RNA into certain kinds of immune cells applicable to other diseases, and his lab is currently working on development of cancer immunotherapy using this technology.
-end-
This work was supported by the Ohio State College of Pharmacy start-up fund, a National Institute of General Medical Sciences Maximizing Investigators' Research Award and Fundamental Research Funds for Chinese Central Universities.

Co-authors, all from Ohio State, include Xucheng Hou, Xinfu Zhang, Weiyu Zhao, Chunxi Zeng, Binbin Deng, David McComb, Shi Du, Chengxiang Zhang and Wenqing Li.

Contact: Yizhou Dong, dong.525@osu.edu; 614-292-3771

Written by Emily Caldwell, Caldwell.151@osu.edu; 614-292-8152

Ohio State University

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.