Nav: Home

Specifying irrigation needs for container-grown plants

January 06, 2020

A study at the University of Florida's Institute of Food and Agricultural Sciences examined the efficiency of irrigation schedules used for container-grown plants to determine if they could be improved with specific daily adjustments.

Jeff Million and Tom Yeager conducted two experiments to monitor the effect of irrigation schedules on plant growth and water usage.

The researchers present their findings in their article "Periodic Versus Real-time Adjustment of a Leaching Fraction-based Microirrigation Schedule for Container-grown Plants" published in the open-access journal HortScience, published by the American Society for Horticultural Science.

The goal of efficient irrigation is to supply enough water for profitable production, but not so much that unnecessary leaching occurs. Million and Yeager determined that one method for monitoring irrigation efficiency under a wide range of production conditions is to note the amount of container drainage and then divide that by the amount of irrigation water applied to the container. The result is called the leaching fraction.

The leaching fraction is defined as the degree of extra irrigation water that must be applied above the amount required by the crop in order to maintain acceptable substrate water content.

Open-field production of 524,000 irrigated acres of horticultural plants in the United States used 205 billion gallons of water in a recent year. Fifty percent of this water was pumped from groundwater sources. These figures are concerning because water resources for irrigation are becoming increasingly limited--technologies to conserve water are needed.

Million and Yeager devised two experiments to determine if a leaching fraction-guided irrigation practice with fixed irrigation run times could be improved by using an evapotranspiration-based scheduling program to make additional adjustments to irrigation run times based on real-time weather information, including rain.

Evapotranspiration is the process by which water is transferred from the land to the atmosphere by evaporation from the soil and by transpiration from plants.

Although sprinkler irrigation is used to produce plants in small containers in high densities, direct application of water using spray-stake irrigation is used to produce plants in larger containers that are placed in low densities. Compared with in-ground production, container production of plants with sprinkler irrigation is inherently inefficient, as containers occupy only a fraction of the production area even when closely spaced.

Direct application of water to the container with spray-stake irrigation can also be inefficient. Typical water delivery rates for spray-stakes are much higher than for typical sprinkler systems so that small changes in irrigation run times can equate to large changes in application volumes and higher chances of overwatering.

Efficiency of spray-stake irrigation can be improved by using a cyclic irrigation system that applies water multiple times per day rather than relying on a single application.

A tested irrigation system with pressure-compensating emitters applied irrigation uniformly and consistently, whereas in a nursery with large irrigated areas, irrigation water may be distributed less uniformly, and irrigation applications may be unpredictably skipped for a host of reasons.

Million and Yeager used a medium-flow, down-spray emitter in a container that represented the smaller size of the range of containers that are typically in nurseries and production facilities. This likely resulted in a more efficient retention of water than would have occurred using the same spray-stake in a larger container.

The researchers found that small daily adjustments to the amount of water applied based on evapotranspiration were not beneficial for saving water compared to adjustments made every 1 to 3 weeks, based on leaching fraction tests. The fact that plant growth was similar for all plants indicates, as Yeager adds, "the leaching fraction test provides a way to justify the amount of irrigation applied and the test is easy to conduct in the nursery."
Open this link to see how a leaching fraction test is conducted.

The complete article is available open-access on the ASHS HortScience journal web site: Or you may contact Jeff Million of the University of Florida at, or call him at (352) 538-1775.

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticulture research, education, and application. More information at

American Society for Horticultural Science

Related Irrigation Articles:

Turned-down temperatures boost crops' penchant for production
Drought and heat put stress on plants and reduce grain yield.
Irrigation alleviates hot extremes
Researchers from ETH Zurich and other universities found evidence that expanding irrigation has dampened anthropogenic warming during hot days, with particularly strong effects over South Asia.
Specifying irrigation needs for container-grown plants
Open-field production of 524,000 irrigated acres of horticultural plants in the United States used 205 billion gallons of water in a recent year.
Water management grows farm profits
A study investigates effects of irrigation management on yield and profit.
Oil and gas wastewater used for irrigation may suppress plant immune systems
A new Colorado State University study gives pause to the idea of using oil and gas wastewater for irrigation.
Rice irrigation worsened landslides in deadliest earthquake of 2018 finds NTU study
Irrigation significantly exacerbated the earthquake-triggered landslides in Palu, on the Indonesian island of Sulawesi, in 2018, according to an international study led by Nanyang Technological University, Singapore (NTU Singapore) scientists.
Engineers produce water-saving crop irrigation sensor
Developed by the team of UConn engineers -- environmental, mechanical, and chemical -- the sensors expected to save nearly 35% of water consumption and cost far less than what exists.
Smart irrigation model predicts rainfall to conserve water
A predictive model combining information about plant physiology, real-time soil conditions and weather forecasts can help make more informed decisions about when and how much to irrigate.
UBC researchers explore an often ignored source of greenhouse gas
In a new study from UBC's Okanagan campus, researchers have discovered a surprising new source of carbon dioxide (CO2) emissions -- bicarbonates hidden in the lake water used to irrigate local orchards.
When irrigation efficiency increases, so does water use
Increased irrigation efficiency does not necessarily lead to reduced agricultural water consumption -- a paradox largely ignored by the public policies that seek to reconcile high water demands amid finite water supply.
More Irrigation News and Irrigation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at