Researchers discover how a bio-pesticide works against spider mites

January 06, 2021

Scientists have uncovered why a food-ingredient-based pesticide made from safflower and cottonseed oils is effective against two-spotted spider mites that attack over a thousand species of plants while sparing the mites' natural predators.

An international team of scientists has uncovered how a bio-pesticide works against spider mites while sparing their natural predators.

The findings, published in the journal Engineering in Life Sciences on October 7, 2020, could present farmers and gardeners with an eco-friendly alternative to synthetic pesticides.

Food ingredients have long been used as alternative pesticides against arthropod pests, such as insects, ticks, and mites, because they tend to be less toxic to mammals and pose less impact to the environment. The way bio-pesticides work - often through physical properties instead of chemical ones - also reduces the likelihood that the targeted pest will develop resistance to the pesticide, in turn reducing the need to use greater quantities of the pesticide or develop new ones.

One such bio-pesticide, made from safflower and cottonseed oils--which takes the brand name Suffoil--has been known to be effective against two-spotted spider mites (Tetranychus urticae), a species of arachnid that attacks more than 1,100 species of plants. Suffoil has no effect on another species of mite (Neoseiulus californicus) that naturally preys on the spider mite.

A spider mite normally hatches by cutting the eggshell, or "chorion," with its appendages as it rotates in the egg. The rotation in turn helps it cut more of the chorion and eases hatching. The spider mite embryo also uses silk threads surrounding the eggs, woven by its parent to house the eggs on the underside of leaves, which may act as leverage to aid this rotation.

To understand how Suffoil works against spider mites, the researchers dipped spider mite eggs in Suffoil and examined them using powerful microscopes. They also used spider mite eggs dipped in water as a control group.

They found that Suffoil partly covered the surface of spider mite eggs and the surrounding silk threads. More importantly, they observed that the embryonic rotational movement essential for hatching was absent or stopped in the Suffoil-covered eggs. It appears that the oil seeps into the eggs through the cut chorion, making the inside too slick for the embryo to rotate, thus preventing the embryo from hatching properly.

"The bio-pesticide works by preventing the spider mite embryo from rotating within its eggshell for hatching," said Takeshi Suzuki, a bio-engineer at Tokyo University of Agriculture and Technology (TUAT) and senior author of the study.

"It may also weaken the toughness of silk threads and reduce the anchoring effect of the egg on the substrate," said Suzuki.

The findings also offer an explanation as to why Suffoil has no effect on the spider mites' natural predators - they don't use rotation to hatch out of their eggs. This means that Suffoil may be used in conjunction with the spider mites' natural predators.
-end-
Other contributors include Naoki Takeda, Ayumi Takata, Yuka Arai, Kazuhiro Sasaya, Shimpei Noyama and Noureldin Abuelfadl Ghazy, all affiliated with TUAT, Shigekazu Wakisaka at OAT Agrio Co., Ltd., and Dagmar Voigt at Technische Universität Dresden.

This work was supported by JSPS KAKENHI, Grant/Award Number: 18H02203; JSPS Invitational Fellowships for Research in Japan, Grant/Award Number: L19542; Equal Opportunities Support of the School of Science at the Technische Universität of Dresden, Germany

For more information about the Iwami laboratory, please visit

http://web.tuat.ac.jp/~tszk/

Original publication:

Naoki Takeda Ayumi Takata Yuka Arai Kazuhiro Sasaya Shimpei Noyama Shigekazu Wakisaka Noureldin Abuelfadl Ghazy Dagmar Voigt Takeshi Suzuki. A vegetable oil-based biopesticide with ovicidal activity against the two-spotted spider mite, Tetranychus urticae Koch. Eng Life Sci. 2020;20:525-534. https://doi.org/10.1002/elsc.202000042

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Contact:

Takeshi Suzuki, PhD
Associate Professor
Graduate School of Bio-Applications and Systems Engineering
Tokyo University of Agriculture and Technology (TUAT), Japan
tszk@cc.tuat.ac.jp

Tokyo University of Agriculture and Technology

Related Pesticide Articles from Brightsurf:

Pesticide deadly to bees now easily detected in honey
A common insecticide that is a major hazard for honeybees is now effectively detected in honey thanks to a simple new method.

Pesticide mixtures a bigger problem than previously thought
New research led by The University of Queensland has provided the first comprehensive analysis of pesticide mixtures in creeks and rivers discharging to the Great Barrier Reef.

Pesticide seed coatings are widespread but underreported
Seed-coated pesticides -- such as neonicotinoids, many of which are highly toxic to both pest and beneficial insects -- are increasingly used in the major field crops, but are underreported, in part, because farmers often do not know what pesticides are on their seeds, according to an international team of researchers.

Pesticide companies leverage regulations for financial gains
Some pesticide companies may put profit ahead of protecting the public from potential harms.

Pesticide exposure may increase heart disease and stroke risk
Occupational exposure to high levels of pesticides may raise the risk of heart disease and stroke, even in generally healthy men.

Biting backfire: Some mosquitoes actually benefit from pesticide application
The common perception that pesticides reduce or eliminate target insect species may not always hold.

Transfer of EU powers leads to silent erosion of UK pesticide regulation
New analysis by the UK Trade Policy Observatory is warning of a significant weakening of enforcement arrangements covering the approval of pesticides as part of legislative changes carried out under the EU Withdrawal Act.

Pesticide exposure causes bumblebee flight to fall short
Bees exposed to a neonicotinoid pesticide fly only a third of the distance that unexposed bees are able to achieve.

Tomato, tomat-oh! -- understanding evolution to reduce pesticide use
Although pesticides are a standard part of crop production, Michigan State University researchers believe pesticide use could be reduced by taking cues from wild plants.

Pesticide cocktail can harm honey bees
A series of tests conducted over several years by scientists at UC San Diego have shown for the first time that Sivanto, developed by Bayer CropScience AG and first registered for commercial use in 2014, could pose a range of threats to honey bees depending on seasonality, bee age and use in combination with common chemicals such as fungicides.

Read More: Pesticide News and Pesticide Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.