Gut microbe may promote breast cancers

January 06, 2021

A microbe found in the colon and commonly associated with the development of colitis and colon cancer also may play a role in the development of some breast cancers, according to new research from investigators with the Johns Hopkins Kimmel Cancer Center and its Bloomberg~Kimmel Institute for Cancer Immunotherapy. Breast tissue cells exposed to this toxin retain a long-term memory, increasing the risk for disease.

In a series of laboratory experiments, researchers discovered that when enterotoxigenic Bacteroides fragilis (ETBF) was introduced to the guts or breast ducts of mice, it always induced growth and metastatic progression of tumor cells. A description of the work is published in the January 6 issue of the journal Cancer Discovery.

While microbes are known to be present in body sites such as the gastrointestinal tract, nasal passages and skin, breast tissue was considered sterile until recently, says senior study author Dipali Sharma, Ph.D., a professor of oncology at Johns Hopkins Medicine.

The study is a first step to show the involvement of ETBF in breast cancer development, Sharma says. Additional studies are needed to clarify how ETBF moves throughout the body, whether ETBF can be a sole driver to directly trigger the transformation of breast cells in humans, and/or if other microbiota also have cancer-causing activity for breast tissue.

"Despite multiple established risk factors for breast cancer, such as age, genetic changes, radiation therapy and family history, a large number of breast cancers arise in women harboring none of these, indicating the need to look beyond," Sharma says. "Our study suggests another risk factor, which is the microbiome. If your microbiome is perturbed, or if you harbor toxigenic microbes with oncogenic function, that could be considered an additional risk factor for breast cancer."

Sharma and colleagues performed several experiments to study the role of ETBF. First, they performed a meta-analysis of clinical data looking at published studies comparing microbial composition among benign and malignant breast tumors and nipple aspirate fluids of breast cancer survivors and healthy volunteers. B. fragilis was consistently detected in all breast tissue samples as well as the nipple fluids of cancer survivors.

In the lab, the team gave the ETBF bacteria by mouth to a group of mice. First, it colonized the gut. Then, within three weeks, the mouse mammary tissue had observable changes usually present in ductal hyperplasia, a precancerous condition. In additional tests, investigators found that hyperplasia-like symptoms also appeared within two to three weeks of injecting ETBF bacteria directly to the teats of mice, and that cells exposed to the toxin always exhibited more rapid tumor progression and developed more aggressive tumors than cells not exposed to the toxin. Breast cells exposed to the toxin for 72 hours retained a memory of the toxin and were able to start cancer development and form metastatic lesions in different mouse models. Investigators also found the Notch1 and beta-catenin cell signaling pathways to be involved in promoting EBFT's role in breast tissue.

In clinical studies, the investigators have started looking for microbiome changes among breast cancer patients to see how this impacts tumor progression and response to therapy. Meanwhile, Sharma says, "we definitely should try to maintain a healthy microbiome, including eating a healthy diet and exercising, and maintaining the correct body mass index."

Down the road, screening for microbiome changes could be as simple as stool sample tests, said lead author Sheetal Parida, a postdoctoral fellow at Johns Hopkins Medicine. "This is just one indicator, and we think there will be multiple," she said. "If we find additional bacteria responsible for cancer development, we can easily look at the stool and check for those. Women at high risk of developing breast cancer might have a high population of some of these."
-end-
The work was supported by the National Cancer Institute (grants R01CA204555 and CA183804), the Breast Cancer Research Foundation, and Bloomberg Philanthropies.

Study co-authors were Shaoguang Wu, Sumit Siddarth, Guannan Wang, Nethaji Muniraj, Arumugam Nagalingam, Christina Hum, Panagiotis Mistriotis, Haiping Hao, C. Conover Talbot Jr., Konstantinos Konstantopoulos, Kathleen L. Gabrielson and Cynthia L. Sears.

Johns Hopkins Medicine

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.