'Sniffing out' fruity thiols in hoppy beers

January 06, 2021

Hoppy beers such as pale ales are becoming increasingly popular. One reason is their pleasant fruity aroma that partially stems from compounds called thiols. Brewers have been looking for an accurate way to track thiols in beer, but current methods typically are not sensitive enough or require use of potentially harmful substances. Now, researchers in ACS' Journal of Agricultural and Food Chemistry present an automated, solvent-less process to assess thiols at very low concentrations.

Thiols, along with other compounds such as terpenes and esters, contribute to the enjoyable odors in "hop-forward" beer styles. Although very small amounts of thiols are present in beer, a little bit of these compounds goes a long way toward achieving a hoppy flavor and fruity aroma. Brewers would like more information about these volatile substances, but it's challenging to accurately detect such small quantities. Previous studies have reported complex, multi-step methods for thiol analysis in beer, but the approaches could not measure all of the thiols brewers want to know about, and some processes used harmful mercury-containing compounds. Thiols also contribute to wine aromas, and researchers have used coated polymers that they can put into the air above the beverage to convert aerosolized wine thiols to more easily measureable compounds. The downside is that this method is not sensitive enough to measure the trace concentrations in beer. To develop a more robust analysis, Nils Rettberg and colleagues wanted to modify previous methods and come up with a safer, faster and more sensitive approach.

In initial experiments to develop the new process, the team modified the sample preparation method used in wine analyses to convert aerosolized thiols to compounds with higher analytical sensitivity. Then, they tweaked and applied a tandem mass spectrometry approach to maximally detect and measure the resulting compounds. Finally, the team tested their new method on 13 commercially available beers from multiple countries made with hop varieties expected to have high thiol content. The distribution of thiols within the selected beers was consistent with prior studies. Surprisingly, the team could only detect one of the three expected thiols in a beer with real grapefruit added, suggesting that the fruit itself likely contributed scent compounds other than thiols. The researchers say the method meets the requirements to detect thiols in beer, while also processing samples in a safer, simpler and quicker manner.
The authors acknowledge funding from the German Federal Ministry for Economic Affairs and Energy.

The abstract that accompanies this paper is available here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.  

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.  

Follow us: Twitter | Facebook

American Chemical Society

Related Beer Articles from Brightsurf:

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

Consumers can distinguish between bitter tastes in beer -- doesn't alter liking
Although most beer consumers can distinguish between different bitter tastes in beer, this does not appear to influence which beer they like.

Beer was here! A new microstructural marker for malting in the archaeological record
A new method for reliably identifying the presence of beer or other malted foodstuffs in archaeological finds is described in a study published May 6, 2020 in the open-access journal PLOS ONE by Andreas G.

Brewing beer that tastes fresh longer
Unlike wine, which generally improves with time, beer does not age well.

Money spent on beer ads linked to underage drinking
Advertising budgets and strategies used by beer companies appear to influence underage drinking, according to new research.

Why you love coffee and beer
Why do you swig bitter, dark roast coffee while your coworker guzzles sweet cola?

Beer and fodder crop has been deteriorating for 6,000 years
The diversity of the crop sorghum, a cereal used to make alcoholic drinks, has been decreasing over time due to agricultural practice.

Keeping heavy metals out of beer and wine
A frosty mug of beer or ruby-red glass of wine just wouldn't be the same if the liquid was murky or gritty.

Investigating cell stress for better health -- and better beer
Human beings are not the only ones who suffer from stress -- even microorganisms can be affected.

Store craft beer in a cool place and consume it as fresh as possible
A new study by the Leibniz-Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM) shows that craft beer should be kept cool and consumed as fresh as possible.

Read More: Beer News and Beer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.