In changing oceans, sea stars may be 'drowning'

January 06, 2021

ITHACA, N.Y. - For more than seven years, a mysterious wasting disease has nearly killed off sea star populations around the world. Some of these species stand at the brink of extinction.

New Cornell University-led research suggests that starfish, victims of sea star wasting disease (SSWD), may actually be in respiratory distress - literally "drowning" in their own environment - as elevated microbial activity derived from nearby organic matter and warm ocean temperatures rob the creatures of their ability to breathe.

"As humans, we breathe, we ventilate, we bring air into our lungs and we exhale," said Ian Hewson, professor of microbiology at Cornell University. "Sea stars diffuse oxygen over their outer surface through little structures called papulae, or skin gills. If there is not enough oxygen surrounding the papulae, the starfish can't breathe."

The research, "Evidence That Microorganisms at the Animal-Water Interface Drive Sea Star Wasting Disease," was published in the journal Frontiers in Microbiology.

According to Hewson, ocean conditions lead to the production of unusual amounts of organic material, which he said prompts bacteria to thrive. As bacteria consume the organic matter, they deplete the oxygen in the water - creating a low-oxygen micro-environment that surrounds starfish and leads to deflation, discoloration, puffiness, and limb twisting or curling.

"It's a cascade of problems that starts with changes in the environment," Hewson said, explaining that most of the organic matter comes from microscopic algae exudation (a discharge), zooplankton excretion and egestion, and from decaying animal carcasses. This stimulates a group of bacteria called copiotrophs, which survive on carbon and rapidly consume organic matter, he said.

The copiotrophs respire, he said, so while absorbing the organic matter, they deplete oxygen in the sea star's watery space.

"It's organic matter concentrations in the water," he said. "If you have a dead and rotting starfish next to starfish that are healthy, all of that dead one's organic matter drifts and fuels the bacteria, creating a hypoxic environment. It looks like disease is being transmitted."

Hewson said that while more scientific work must be done, "This reframes the discussion about marine disease ecology, which has focused on pathogenic disease," he said. "We should now include microorganisms that don't directly cause the pathology, since they may hold a key to affecting sea star health."
-end-
The research was supported by the National Science Foundation and the U.S. Geological Survey.

Cornell University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.