Shiga toxin's not supposed to kill you

January 06, 2021

E. coli food poisoning is one of the worst food poisonings, causing bloody diarrhea and kidney damage. But all the carnage might be just an unintended side effect, researchers from UConn Health report in the 27 November issue of Science Immunology. Their findings might lead to more effective treatments for this potentially deadly disease.

Escherichia coli are a diverse group of bacteria that often live in animal guts. Many types of E. coli never make us sick; other varieties can cause traveler's diarrhea. But swallowing even a few cells of the type of E. coli that makes Shiga toxin can make us very, very ill. Shiga toxin damages blood vessels in the intestines, causing bloody diarrhea. If Shiga toxin gets into the bloodstream it can cause kidney failure.

"This is especially common in children; about 15% of kids with Shiga toxin-producing E. coli infections get kidney disease, and some can suffer long term kidney damage," says UConn Health immunologist Sivapriya Vanaja.

A group of Shiga toxin-producing E. coli called enterohemorrhagic E. coli, or EHEC, are especially common in the United States. When you hear that a batch of romaine lettuce is being recalled because of a dangerous outbreak of food poisoning, it's almost certainly due to EHEC.

EHEC normally live in cattle without making them sick. It used to be relatively common to have EHEC outbreaks coming from unhygienically prepared ground meat, but stringent regulations on slaughterhouses have made this less common. Now it's more likely for EHEC to appear on vegetables grown in fields adjacent to cattle or manure runoff.

But no matter where it comes from, once EHEC bacteria get inside a human, the infection is hard to treat. Antibiotics tend to make it worse--when the bacteria feel themselves dying, they make more Shiga toxin. And EHEC are very good at inhibiting the part of the immune system that normally responds early to this kind of infection, allowing them to grow unchecked in the human gut.

In a study led by Morena Havira, a postdoctoral fellow in Vanaja's lab, the team wanted to know how EHEC suppresses the immune system. The body normally responds to early stages of E. coli infections by activating an enzyme that kicks off an alarm inside cells. The cell bursts open to release a cloud of warning molecules that call other parts of the immune system to come and fight the bacteria.

But EHEC squashes that early response. To figure out how it does that, Vanaja and her colleagues decided to see which individual gene in EHEC was responsible. They took many different varieties of EHEC from a bacterial mutant library, and infected immune cells with them.

The team found that cells infected with EHEC that was missing the gene for Shiga toxin mustered a higher immune response compared to normal EHEC.

"It was surprising. Shiga toxin is very well-studied for its toxic activity; it wasn't known that it had another function," Dr. Vanaja says. So Shiga toxin's stealthy suppression of the immune system may have a link to all the bloody drama that ensues. Spurred on by this exciting observation, they conducted a series of detailed molecular studies, which revealed that Shiga toxin blocks a protein from bursting open the infected cell and alerting the body of infection.

Now that Vanaja and her colleagues know the specific molecular step Shiga toxin interferes with inside the immune cells, they are trying to figure out how, exactly, it blocks it. Once they know that, they may be able to find medicines that prevent toxin from interfering with immune responses.
-end-


University of Connecticut

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.