Light-based processors boost machine-learning processing

January 06, 2021

The exponential growth of data traffic in our digital age poses some real challenges on processing power. And with the advent of machine learning and AI in, for example, self-driving vehicles and speech recognition, the upward trend is set to continue. All this places a heavy burden on the ability of current computer processors to keep up with demand.

Now, an international team of scientists has turned to light to tackle the problem. The researchers developed a new approach and architecture that combines processing and data storage onto a single chip by using light-based, or "photonic" processors, which are shown to surpass conventional electronic chips by processing information much more rapidly and in parallel.

The scientists developed a hardware accelerator for so-called matrix-vector multiplications, which are the backbone of neural networks (algorithms that simulate the human brain), which themselves are used for machine-learning algorithms. Since different light wavelengths (colors) don't interfere with each other, the researchers could use multiple wavelengths of light for parallel calculations. But to do this, they used another innovative technology, developed at EPFL, a chip-based "frequency comb", as a light source.

"Our study is the first to apply frequency combs in the field of artificially neural networks," says Professor Tobias Kippenberg at EPFL, one the study's leads. Professor Kippenberg's research has pioneered the development of frequency combs. "The frequency comb provides a variety of optical wavelengths that are processed independently of one another in the same photonic chip."

"Light-based processors for speeding up tasks in the field of machine learning enable complex mathematical tasks to be processed at high speeds and throughputs," says senior co-author Wolfram Pernice at Münster University, one of the professors who led the research. "This is much faster than conventional chips which rely on electronic data transfer, such as graphic cards or specialized hardware like TPU's (Tensor Processing Unit)."

After designing and fabricating the photonic chips, the researchers tested them on a neural network that recognizes of hand-written numbers. Inspired by biology, these networks are a concept in the field of machine learning and are used primarily in the processing of image or audio data. "The convolution operation between input data and one or more filters - which can identify edges in an image, for example, are well suited to our matrix architecture," says Johannes Feldmann, now based at the University of Oxford Department of Materials. Nathan Youngblood (Oxford University) adds: "Exploiting wavelength multiplexing permits higher data rates and computing densities, i.e. operations per area of processer, not previously attained."

"This work is a real showcase of European collaborative research," says David Wright at the University of Exeter, who leads the EU project FunComp, which funded the work. "Whilst every research group involved is world-leading in their own way, it was bringing all these parts together that made this work truly possible."

The study is published in Nature this week, and has far-reaching applications: higher simultaneous (and energy-saving) processing of data in artificial intelligence, larger neural networks for more accurate forecasts and more precise data analysis, large amounts of clinical data for diagnoses, enhancing rapid evaluation of sensor data in self-driving vehicles, and expanding cloud computing infrastructures with more storage space, computing power, and applications software.

J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A.S. Raja, J. Liu, C.D. Wright, A. Sebastian, T.J. Kippenberg, W.H.P. Pernice, H. Bhaskaran. Parallel convolution processing using an integrated photonic tensor core. Nature 07 January 2021. DOI: 10.1038/s41586-020-03070-1

Ecole Polytechnique Fédérale de Lausanne

Related Neural Networks Articles from Brightsurf:

Deep neural networks show promise for predicting future self-harm based on clinical notes
Medical University of South Carolina researchers report in JMIR Medical Informatics that they have developed deep learning models to predict intentional self-harm based on information in clinical notes.

Researchers develop new model of the brain's real-life neural networks
Researchers at the Cyber-Physical Systems Group at the USC Viterbi School of Engineering, in conjunction with the University of Illinois at Urbana-Champaign, have developed a new model of how information deep in the brain could flow from one network to another and how these neuronal network clusters self-optimize over time.

The brain's memory abilities inspire AI experts in making neural networks less 'forgetful'
Artificial intelligence (AI) experts at the University of Massachusetts Amherst and the Baylor College of Medicine report that they have successfully addressed what they call a ''major, long-standing obstacle to increasing AI capabilities'' by drawing inspiration from a human brain memory mechanism known as ''replay.''

New data processing module makes deep neural networks smarter
Artificial intelligence researchers have improved the performance of deep neural networks by combining feature normalization and feature attention modules into a single module that they call attentive normalization.

Neural cartography
A new x-ray microscopy technique could help accelerate efforts to map neural circuits and ultimately the brain itself.

Researchers study why neural networks are efficient in their predictions
A study has tested the predictions of a neural network to check whether they coincide with actual results.

Optimizing neural networks on a brain-inspired computer
Neural networks in both biological settings and artificial intelligence distribute computation across their neurons to solve complex tasks.

Teaching physics to neural networks removes 'chaos blindness'
Teaching physics to neural networks enables those networks to better adapt to chaos within their environment.

A clique away from more efficient networks
An old branch of mathematics finds a fertile new field of application.

Unravelling complex brain networks with automated 3D neural mapping
KAIST researchers developed a new algorithm for brain imaging data analysis that enables the precise and quantitative mapping of complex neural circuits onto a standardized 3D reference atlas.

Read More: Neural Networks News and Neural Networks Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to