Nav: Home

Mutations in transporter protein shed light on neurodegenerative disorders

January 07, 2005

Bethesda, MD - Researchers at Stanford University have made new discoveries that shed light on two inherited neurodegenerative disorders that are caused by inability of the body to transport sialic acid out of cellular compartments. The findings focus on how different mutations in one transporter molecule can cause a wide spectrum of symptoms in Salla Disease and infantile sialic acid storage disease (ISSD).

The research appears as the "Paper of the Week" in the January 14 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

The free sialic acid storage diseases are a range of rare, autosomal recessive, neurodegenerative disorders that result from the accumulation of sialic acid within lysosomes. There are two forms of the disease--Salla Disease, the milder form, and the more severe infantile sialic acid storage disease (ISSD).

"Clinically, these diseases consist of a spectrum," notes Dr. Richard J. Reimer of Stanford University. "In the severe phenotype infants are born with dysmorphic features, enlarged internal organs and die within a few months. With the milder disease the affected individuals have physical and mental developmental delay, but can live to adulthood."

In Salla Disease and ISSD, the amino sugar sialic acid accumulates in lysosomes, the cellular compartments that are responsible for degrading macromolecules. "Sialic acid is part of a number of proteins and normally it is removed from proteins as they are degraded in lysosomes," explains Dr. Reimer. "The free sialic acid is then released into the cytoplasm of the cell so that it can be reincorporated in to newly synthesized proteins. In Salla Disease and ISSD, the sialic acid is removed from the protein, but it is not released from the lysosome."

Genetic studies have shown that mutations in a single gene encoding a protein called sialin are responsible for both diseases. "The milder form is associated with a single mutation and is most common in a region in northern Finland," says Dr. Reimer. "The more severe form does not appear to have a regional or ethnic predilection and can be caused by any of several different mutations. To date a total of 18 mutations have been identified in addition to the Finnish mutation."

To better understand how mutations in sialin cause the two diseases, Dr. Reimer and his colleagues at Stanford altered part of the sialin molecule, causing it to be expressed on the surface of cells rather than inside lysosomes. In doing this, the researchers were able to easily compare the sialic acid transport ability of normal versus mutated versions of sialin. Using this approach, they proved that sialin is responsible for transporting sialic acid out of the lysosome.

Dr. Reimer and his colleagues also evaluated the impact of sialin's identified mutations on sialic acid export and discovered a direct correlation between the degree of transport activity lost and the severity of the clinical phenotype.

"In the more common and milder form of the disease we found that the mutant proteins work, but not as well. Our findings suggest that for the milder form of the disease a functional protein is still produced, but with reduced activity. From the work of others we know that carriers are asymptomatic even with a 50 percent reduction in sialic acid transport activity. This suggests that for the milder form of the disease increasing the level of expression or stability of the protein could be one way to treat the disease," concludes Dr. Reimer.
-end-
The Journal of Biological Chemistry's Papers of the Week is an online feature which highlights the top one percent of papers received by the journal. Brief summaries of the papers and explanations of why they were selected for this honor can be accessed directly from the home page of the Journal of Biological Chemistry online at www.jbc.org.

The American Society for Biochemistry and Molecular Biology (ASBMB) is a nonprofit scientific and educational organization with over 11,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions, and industry.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's primary purpose is to advance the sciences of biochemistry and molecular biology through its publications, the Journal of Biological Chemistry, The Journal of Lipid Research, Molecular and Cellular Proteomics, and Biochemistry and Molecular Biology Education, and the holding of scientific meetings.

For more information about ASBMB, see the Society's website at www.asbmb.org.

American Society for Biochemistry and Molecular Biology

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.