Nav: Home

Cool deep-water protects coral reefs against heat stress

January 07, 2015

1991, 1995, 2003, 2010 - again and again, increased water temperatures lead to bleaching with fatal consequences for stony corals in the Andaman Sea. These animals are highly susceptible to changes in water temperatures. Even a small temperature rise damages the symbiotic algae living in a cell layer of the corals causing their expulsion by the coral host. The corals, which depend on the photosynthetic energy of their symbionts, are hardly able to survive without them. The rise in ocean temperatures and coral bleaching are considered as the greatest threats to coral reef ecosystems worldwide. Therefore, natural retreat areas where corals experience less stress or have become more resistant through physiological adaptations are investigated.

In 2010, the most massive coral bleaching so far has hit the Andaman Sea. "The consequences differed a lot depending on local situations," emphasizes Dr. Marlene Wall, biologist at GEOMAR Helmholtz Centre for Ocean Research Kiel and first author of the study published in the January issue of the Proceedings of the Royal Society B. In their study, the scientists analysed how the location of the reefs determined the extent of the damage: Locations that faced westwards benefitted from so-called large-amplitude internal waves (LAIW). In contrast to surface waves, LAIW travel along density gradients that separate the cold deep water from the warmer upper layer. Once they reach the continental shelf, internal waves may break and transport water from the deep to the shallow coral reefs. At reefs that were sheltered by islands, the heat stress was 40 to 80 per cent higher - with dramatic consequences.

In the Andaman Sea, internal waves can temporarily cool down the water temperature around coral reefs by up to ten degrees Celsius. "These changes are a mixed blessing. Under normal conditions, lower temperatures have negative effects on the corals. But during heat stress, they offer unexpected cooling and help the corals to survive," says project leader Prof. Claudio Richter from the Alfred Wegener Institute for Polar and Marine Research. He examines the phenomenon of internal waves in the tropics and the polar regions.

In the tropical Andaman See, internal waves are most pronounced during the dry northeast monsoon from January to March. In July and August, the monsoon blows from the southwest. It brings rain, mixes the ocean thoroughly and drives water towards the coasts - the coral reefs of the islands' west flanks are then exposed to greater sedimentation. "The reefs of the western sides are less developed, because LAIW also temporarily cause ocean acidification and reduce the oxygen availability in the reefs," says Dr. Wall. Nevertheless, the coral communities on the west shores are similarly rich in coral species, which proves that the corals living there have adapted physiologically to these recurring problems. "In regions where internal waves come about, they could contribute to the conservation of coral reefs," the authors stress in their study. As part of their investigation, the biologists revealed differences between the data of the satellite monitoring of the US-American National Oceanic and Atmospheric Administration (NOAA) and in-situ work: Only on-site measurements reflected the potential of internal waves. "Accurate knowledge of local conditions is therefore important for the establishment and monitoring of protected areas for corals," says Dr. Wall.
Original Publication

Wall M., Putchim L., Schmidt G.M., Jantzen C., Khokiattiwong S., Richter C. (2015), Large-amplitude internal waves benefit corals during thermal stress. Proc. R. Soc. B 282, doi: 10.1098/rspb.2014.0650

Links GEOMAR Helmholtz Centre for Ocean Research Kiel Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) BIOACID (Biological Impacts of Ocean Acidification) CALMARO (Calcification by Marine Organisms)


Images are available for download at

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Stress Articles:

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at