Nav: Home

Coral reefs threatened by a deadly combination of changing ocean conditions

January 07, 2015

The lowering of the ocean's pH is making it harder for corals to grow their skeletons and easier for bioeroding organisms to tear them down. Erosion rates increase tenfold in areas where corals are also exposed to high levels of nutrients, according to a study published January 2015 in the journal Geology. As sea level rises, these reefs may have a harder time growing toward the ocean surface, where they get sunlight they need to survive.

The study, led by scientists at Woods Hole Oceanographic Institution (WHOI), highlights the multiple threats to coral reef ecosystems, which provide critical buffers to shoreline erosion, sustain fisheries that feed hundreds of millions of people, and harbor 25 percent of all marine species. And it points to a key management strategy that could slow reef decline: reducing the input of nutrient pollution to the coastal ocean from human activity such as runoff from sewers, septic tanks, roads, and fertilizers.

Corals make their skeletons out of calcium and carbonate ions from seawater, constructing massive colonies as large as cars and small houses. As the ocean absorbs excess carbon dioxide from fossil-fuel burning, it spurs chemical reactions that lower the pH of seawater, a process known as ocean acidification. The process removes carbonate ions, making them less available for corals to build skeletons.

"A healthy coral reef ecosystem exists in a constant and often overlooked tug-of-war. As corals build their skeletons up toward the sea surface, other organisms--mollusks, worms, and sponges--bore into and erode the skeletons to create shelters," said lead author Thomas DeCarlo, a graduate student in the WHOI-MIT Joint Program in Oceanography, working in Anne Cohen's lab at WHOI.

This process, called bioerosion, reduces skeletons to rubble, which is transported offshore during fierce storms or gradually dissolved in the sediments. On healthy reefs today, calcium carbonate production barely exceeds the loss by erosion, dissolution, and offshore transport. As a result of this delicate balance, coral reefs grow very slowly, if at all, when sea level is stable.

The new study shows that additional nutrients provide a dramatic boost for bioeroders that, combined with lower pH conditions, will tip this balance in favor of erosion. The bioeroders are filter feeders, sifting particles of food out of seawater. Nutrients spur the growth of plankton, supplying food for large populations of bioeroders that burrow into coral skeletons.

When corals and bioeroders are in balance, the former grow just fast enough to stay near the sea surface, while the latter are busily sculpting the coral skeletons into an intricate, three-dimensional habitat full of nooks and hiding places for fish, urchins, and other marine life.

In waters with fewer carbonate ions and more nutrients, corals may not be able to build new skeleton fast enough to keep pace with bioeroders cutting down the reef. The result would be "flatter" coral reefs with less of the three-dimensional structure responsible for the rich biodiversity found on coral reefs.

To conduct the study, the research team investigated coral reefs spanning the Pacific Ocean, from the west coast of Panama to Palau. The reefs also spanned a range of different naturally occurring pH and nutrient conditions in the ocean, including several reefs in seawater with pH levels today that are as low as those expected for much of the tropical ocean by 2100. That allowed the scientists to examine how bioeroders are affected by the isolated and combined influences of pH and nutrient conditions.

The scientists used underwater drills to collect cores of coral skeletons. They put the cores through the CAT scanner at the Computerized Scanning and Imaging Facility at WHOI to get 3-D images of tunnels and borings made by bioeroders with a resolution of about the width of a human hair. That allowed them to calculate precisely how much skeleton the bioeroders had removed.

The researchers found that relatively acidic (lower-pH) reefs were more heavily bio-eroded than their higher-pH counterparts. But their most striking finding was that in waters with a combination of high nutrient levels and lower-pH, bio-erosion is ten times higher than in lower-pH waters without high nutrient levels.

"The ocean will certainly absorb more CO2 over the next century, and ocean acidification is a global phenomenon that reefs cannot escape," DeCarlo said. "But the encouraging news in our findings is that people can take action to protect their local reefs. If people can limit runoff from septic tanks, sewers, roads, farm fertilizers, and others sources of nutrient pollution to the coastal ocean, the bioeroders will not have such an upper hand, and the balance will tip much more slowly toward erosion and dissolution of coral reefs."
-end-
Along with DeCarlo and Cohen, the team included Hannah Barkley (WHOI), Kathryn Shamberger (WHOI, now at Texas A&M University), Quinn Cobban (Falmouth Academy), Charles Young and Russell Brainard (NOAA), and Yimnang Golbuu (Palau International Coral Reef Center). The research was funded by the National Science Foundation, the Nature Conservancy, and the National Oceanic and Atmospheric Administration's Coral Reef Conservation Program.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Woods Hole Oceanographic Institution

Related Coral Reefs Articles:

Can coral reefs 'have it all'?
A new study outlines how strategic placement of no-fishing marine reserves can help coral reef fish communities thrive.
Coral reefs 'weathering' the pressure of globalization
More information about the effects human activities have on Southeast Asian coral reefs has been revealed, with researchers looking at how large-scale global pressures, combined with the El Niño Southern Oscillation (ENSO) climate pattern, can detrimentally impact these delicate marine ecosystems.
Coral reefs: Centuries of human impact
In her AAAS talk, ASU researcher Katie Cramer outlines the evidence of the long-ago human footprints that set the stage for the recent coral reef die-offs we are witnessing today.
Large 'herbivores of the sea' help keep coral reefs healthy
Selective fishing can disrupt the delicate balance maintained between corals and algae in embattled Caribbean coral reefs.
How microbes reflect the health of coral reefs
Microorganisms play important roles in the health and protection of coral reefs, yet exploring these connections can be difficult due to the lack of unspoiled reef systems throughout the global ocean.
3-D printed coral could help endangered reefs
Threats to coral reefs are everywhere--rising water temperatures, ocean acidification, coral bleaching, fishing and other human activities.
Actions to save coral reefs could benefit all ecosystems
Scientists say bolder actions to protect the world's coral reefs will benefit all ecosystems, human livelihoods and improve food security.
Coral reefs shifting away from equator
Coral reefs are retreating from equatorial waters and establishing new reefs in more temperate regions, according to new research in the journal Marine Ecology Progress Series.
Protecting coral reefs in a deteriorating environment
A new report examines novel approaches for saving coral reefs imperiled by climate change, and how local decision-makers can assess the risks and benefits of intervention.
Coral reefs can't return from acid trip
When put to the test, corals and coralline algae are not able to acclimatise to ocean acidification.
More Coral Reefs News and Coral Reefs Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.