Nav: Home

Machine learning and quantum mechanics team up to understand water at the atomic level

January 07, 2019

The building blocks of most observable matters are electrons and nuclei. Following the laws of quantum mechanics, their behavior can be described in terms of their wave function, sort of a diffuse cloud that is related to the probability of observing them in a given point and time. By solving the Schrodinger equation, it is possible to make models and predictions of any material, including water. But there is a catch. As the number of electrons and nuclei increases, the complexity involved soon become intractable even with the fastest supercomputers, and even after a century of celebrated progress in optimizing such calculations. In fact, quantum mechanical calculations are still unaffordable for systems with more than a few hundred atoms, or for a time period longer than a nanosecond, which is 1/1,000,000,000th of a second.

To overcome these harsh limitations, the researchers exploited an artificial neural network (ANN) to learn the atomic interactions from quantum mechanics. The architecture of ANNs can be represented as several layers of interconnected nodes, which mimics the structure of the neurons in a human brain. The ANN first learns quantum mechanical interactions between atoms, and then make speedy predictions about the energy and forces for a system of atoms, bypassing the need to perform expensive quantum mechanical calculations.

So far, it all rather sounds like a typical success story of machine learning. However, there are subtleties. The ANN has a residual error compared to the actual quantum mechanical calculations: most of the times it introduce a small noise, and sometime it makes a wild guess if an input is very different from anything it has learned. How to avoid the pitfalls of the ANN? Instead of employing ANN on its own to make predictions about a system of atoms, the researchers used it as a surrogate model. In essence, computing properties of materials at a finite temperature usually involves many computation steps, the laborious and repetitive parts can be delegated to the cheap surrogate model. Finally, the difference between the surrogate and the ground truth, which is the difference between the ANN and quantum mechanics, can be accounted for and subtracted from the final predictions.

With these techniques, the researchers were thus able to to reproduce several thermodynamic properties of water from quantum mechanics, including the density of ice and water, the difference in melting temperature for normal and heavy water, and the stability of different forms of ice. Moreover, the study reveals several physical insights on what give ice and water systems their peculiar properties. One of the most notable findings is the that nuclear quantum fluctuations, which is the tendency for light elements such as hydrogen to behave more like a diffuse cloud rather than a localized particle, promote hexagonal packing of molecules inside ice, which ultimately leads to the six-fold symmetry of snowflakes.

National Centre of Competence in Research (NCCR) MARVEL

Related Quantum Mechanics Articles:

Artificial intelligence algorithm can learn the laws of quantum mechanics
Artificial intelligence can be used to predict molecular wave functions and the electronic properties of molecules.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Bridge between quantum mechanics and general relativity still possible
An international team of researchers developed a unified framework that would account for this apparent break down between classical and quantum physics, and they put it to the test using a quantum satellite called Micius.
'Poor man's qubit' can solve quantum problems without going quantum
Researchers have built and demonstrated the first hardware for a probabilistic computer, a possible way to bridge the gap between classical and quantum computing.
Cracking a decades-old test, researchers bolster case for quantum mechanics
At upcoming FiO + LS conference, researchers will discuss creative tactics to get rid of loopholes that have long confounded tests of quantum mechanics.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
NUS scientists discover how to 'lock' heat in place using quantum mechanics
In a global first, NUS scientists have demonstrated that heat energy can be manipulated by utilising the quantum mechanical principle of anti-parity-time symmetry.
New research explores the mechanics of how birds flock
Wildlife researchers have long tried to understand why birds fly in flocks and how different types of flocks work.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
More Quantum Mechanics News and Quantum Mechanics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab