Nav: Home

Quantum scientists demonstrate world-first 3D atomic-scale quantum chip architecture

January 07, 2019

UNSW researchers at the Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) have shown for the first time that they can build atomic precision qubits in a 3D device - another major step towards a universal quantum computer.

The team of researchers, led by 2018 Australian of the Year and Director of CQC2T Professor Michelle Simmons, have demonstrated that they can extend their atomic qubit fabrication technique to multiple layers of a silicon crystal - achieving a critical component of the 3D chip architecture that they introduced to the world in 2015. This new research was published today in Nature Nanotechnology.

The group is the first to demonstrate the feasibility of an architecture that uses atomic-scale qubits aligned to control lines - which are essentially very narrow wires - inside a 3D design.

What's more, the team was able to align the different layers in their 3D device with nanometer precision - and showed they could read out qubit states single shot, i.e. within one single measurement, with very high fidelity.

"This 3D device architecture is a significant advancement for atomic qubits in silicon," says Professor Simmons. "To be able to constantly correct for errors in quantum calculations - an important milestone in our field - you have to be able to control many qubits in parallel.

"The only way to do this is to use a 3D architecture, so in 2015 we developed and patented a vertical crisscross architecture. However, there were still a series of challenges related to the fabrication of this multi-layered device. With this result we have now shown that engineering our approach in 3D is possible in the way we envisioned it a few years ago."

In this paper, the team has demonstrated how to build a second control plane or layer on top of the first layer of qubits.

"It's a highly complicated process, but in very simple terms, we built the first plane, and then optimized a technique to grow the second layer without impacting the structures in first layer," explains CQC2T researcher and co-author, Dr Joris Keizer.

"In the past, critics would say that that's not possible because the surface of the second layer gets very rough, and you wouldn't be able to use our precision technique anymore - however, in this paper, we have shown that we can do it, contrary to expectations."

The team also demonstrated that they can then align these multiple layers with nanometer precision.

"If you write something on the first silicon layer and then put a silicon layer on top, you still need to identify your location to align components on both layers. We have shown a technique that can achieve alignment within under 5 nanometers, which is quite extraordinary," Dr Keizer says.

Lastly, the researchers were able to measure the qubit output of the 3D device with what's called single shot - i.e. with one single, accurate measurement, rather than having to rely on averaging out millions of experiments. "This will further help us scale up faster," Dr Keizer explains.

Towards commercialisation

Professor Simmons says that this research is a major milestone in the field.

"We are working systematically towards a large-scale architecture that will lead us to the eventual commercialisation of the technology.

"This is an important development in the field of quantum computing, but it's also quite exciting for SQC," says Professor Simmons, who is also the founder and a director of SQC.

Since May 2017, Australia's first quantum computing company, Silicon Quantum Computing Pty Limited (SQC), has been working to create and commercialise a quantum computer based on a suite of intellectual property developed at CQC2T and its own proprietary intellectual property.

"While we are still at least a decade away from a large-scale quantum computer, the work of CQC2T remains at the forefront of innovation in this space. Concrete results such as these reaffirm our strong position internationally," she concludes.
-end-


University of New South Wales

Related Quantum Computing Articles:

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
New material shows high potential for quantum computing
A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial for fault-tolerant quantum computing -- the kind of quantum computing that addresses errors during its operation.
A sound idea: a step towards quantum computing
Researchers at the University of Tsukuba and the University of Pittsburgh have developed a new method for using lasers to create tiny lattice waves inside silicon crystals that can encode quantum information.
Quantum computing boost from vapour stabilising technique
A technique to stabilise alkali metal vapour density using gold nanoparticles, so electrons can be accessed for applications including quantum computing, atom cooling and precision measurements, has been patented by scientists at the University of Bath.
Quantum cloud computing with self-check
With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics.
More Quantum Computing News and Quantum Computing Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab