How the brain decides whether to hold 'em or fold 'em

January 07, 2019

Picture yourself at a Las Vegas poker table, holding a bad hand - one with a very low chance of winning. Even so, the sight of the large stack of chips that piled up during a recent lucky streak nudges you to place a large bet anyway.

Why do people make high-risk decisions - not only in casinos, but also in other aspects of their lives - even when they know the odds are stacked against them?

A team led by a Johns Hopkins biomedical engineer has found that the decision to "up the ante" even in the face of long odds is the result of an internal bias that adds up over time and involves a "push-pull" dynamic between the brain's two hemispheres.

Whether you are suffering from a losing streak or riding a wave of wins, your cumulative feelings from each preceding hand all contribute to this nudge factor, they say. A paper on the study is to be published online the week of Jan. 7 by the journal Proceedings of the National Academy of Sciences.

Insights from the research have the potential to shed light on how soldiers in high-risk combat situations make decisions and to facilitate more effective brain training to change or "rewire" long-term behavior or habits, the researchers suggest.

"What we learned is that there is a bias that develops over time that may make people view risk differently," said senior author Sridevi Sarma, a biomedical engineering professor at the Johns Hopkins University Whiting School of Engineering and member of its Institute for Computational Medicine. Pierre Sacré, a postdoctoral fellow at Johns Hopkins, co-led the study.

Sarma's group sought to understand why people tend to take risks even when the odds are against them or avoid risk even when the odds are favorable. They also wanted to learn where in the human brain such behavior originates. They asked patients at the Cleveland Clinic's Epilepsy Monitoring Unit to play a simple card game involving risk taking.

The patients had undergone stereoelectroencephalography, a procedure in which doctors implanted multiple deep-seated electrodes in their brains; that was designed to allow the doctors to locate the source of seizures for future surgical treatment. Each of these depth electrodes has 10 to 16 channels that record voltage signals from the neurons surrounding it. The electrodes also allowed Sarma and her team an intimate look at the patients' brains in real time, as they made decisions while gambling against a computer in a card game.

The game was simple: The computer had an infinite deck of cards with only five different values - 2, 4, 6, 8, and 10 - each of which was equally likely to be dealt. Following every round, the cards went back into the deck, leaving odds unchanged.

Participants were shown two cards on a computer screen, one faceup and the other facedown. (The faceup card was the player's, and the facedown card was the computer's.) Participants were asked to bet low ($5) or high ($20) that their card had a higher value than the computer's facedown one.

When dealt a 2, 4, 8, or 10, participants bet quickly and instinctively, the research team found. When dealt a 6, however, they wavered and were nudged into betting higher or lower depending on their bias - even though the chances of picking a higher or lower card were the same as before. In other words, participants' betting behavior was based on how they fared on past bets even though those results had no bearing on the outcome of the new bets.

On examining neural signals recorded during all four stages of the game, Sarma's team found a predominance of high-frequency gamma brain waves. They were even able to localize these signals to particular structures in the brain. It turns out that these regions - excluding any implicated in drug-resistant epilepsy - were associated positively or negatively with risk-taking behavior.

"When your right brain has high-frequency activity and you get a gamble, you're pushed to take more of a risk," said Sacré, who expressed surprise at the symmetry of the patients' brain reactions under these conditions. "But if the left side has high-frequency activity, it's pulling you away from taking a risk. We call this a push-pull system."

To assess that internal bias, the researchers developed a mathematical equation that successfully calculated each patient's bias using only their past wagers.

"We found that if you actually solve for what this looks like over time, the players are accumulating all the past card values and all the past outcomes, but with a fading memory," Sarma says. "In other words, what happened most recently weighs on a person more than older events do. This means that based on the history of a participant's bets, we can predict how that person is feeling as they gamble."
-end-
Study co-authors included Ernst Niebur, Kevin Kahn, Matthew S. D. Kerr, and Sandya Subramanian from the Johns Hopkins University; and Jorge A. González-Martínez, Zachary Fitzgerald, and Matthew A. Johnson from the Cleveland Clinic. Uri T. Eden from Boston University and John T. Gale from Emory University also were co-authors.

The National Science Foundation and the Kavli Neuroscience Discovery Institute at Johns Hopkins University paid for the study.

Johns Hopkins University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.