Attosecond control of an atomic electron cloud

January 07, 2020

Working as a collaborative research team, Tatsuo Kaneyasu (SAGA Light Source/Institute for Molecular Science), Yasumasa Hikosaka (University of Toyama), Masahiro Katoh (Hiroshima University/Institute for Molecular Science) and co-workers have invented a way to manipulate the shape of an electron cloud in an atom using the coherent control technique with synchrotron radiation. The work, which has been published in Physical Review Letters, paves the way towards the ultrafast control of electronic systems using synchrotron radiation.

Controlling and probing the electronic motion in atoms and molecules on their natural time scale of attoseconds is one of the frontiers in atomic physics and attosecond physics. Thanks to advances in laser technology, a number of attosecond experiments have been performed with ultrashort laser pulses. In contrast, this research team have presented a new route to the attosecond coherent control of electronic systems using synchrotron radiation. The potential use of undulator radiation as longitudinally coherent wave packets was demonstrated by achieving population control in the photoexcitation of helium atoms [Y. Hikosaka et al., Nature Commun. 10, 4988 (2019)]. The next challenge was the application of the polarization properties of the synchrotron radiation to coherent control.

The team's latest paper, recently published in Physical Review Letters, reports a successful observation of the control of the electron cloud in a helium atom. Pairs of left- and right-circularly polarized radiation wave packets were generated using two helical undulators. The duration of each wave packet pair was a few femtoseconds, and the extreme ultraviolet radiation was used to irradiate helium atoms. With this technique they succeeded in controlling the shape and orientation of the electron cloud, formed as a coherent superposition state, by tuning the time delay between the two wave packets on the attosecond level.

In contrast to standard laser technology, there is no technical restriction on the extension of this method to shorter and shorter wavelengths. This new capability of synchrotron radiation not only helps scientists to study ultrafast phenomena in atomic and molecular processes, but may also open up new applications in the development of functional materials and electronic devices in the future.

National Institutes of Natural Sciences

Related Atoms Articles from Brightsurf:

How to gently caress atoms
It is extremely difficult to study oxygen molecules on the metal oxide surface without altering them.

'Hot and messy' entanglement of 15 trillion atoms
In a study published in Nature Communications, ICFO, HDU and UPV researchers report the production of a giant entangled state that may help medical researchers detect extremely faint magnetic signals from the brain.

Exciting apparatus helps atoms see the light
Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms - unusually large excited atoms - near nanometer-thin optical fibers.

Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.

Grabbing atoms
In a first for quantum physics, University of Otago researchers have 'held' individual atoms in place and observed previously unseen complex atomic interactions.

Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.

2D materials: arrangement of atoms measured in silicene
Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties.

Atoms don't like jumping rope
Nanooptical traps are a promising building block for quantum technologies.

2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.

Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.

Read More: Atoms News and Atoms Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to