Machine-learning models of matter beyond interatomic potentials

January 07, 2021

Combining electronic structure calculations and machine learning (ML) techniques has become a common approach in the atomistic modelling of matter. Using the two techniques together has allowed researchers, for instance, to create models that use atomic coordinates as the only inputs to inexpensively predict any property that can be computed by the first-principles calculations that had been used to train them.

While the earliest and by now most advanced efforts have focused on using predictions of total energies and atomic forces to construct interatomic potentials, more recent efforts have targeted additional properties of crystals and molecules such as ionization energies, NMR chemical shieldings, dielectric response properties and charge density. In the paper "Learning the electronic density of states in condensed matter," Ceriotti and colleagues focus on the electronic density of states (DOS), another quantity that underlies many useful materials properties, some of which can be observed experimentally.

The DOS is essentially the number of different states that electrons can occupy at a particular energy level and can be used, for instance, to calculate the electronic contribution to heat capacity in metals and the density of free charge carriers in semiconductors. It is an indirect proxy for properties such as the energy band gap, the band energy and the optical absorption spectrum.

"Predicting the DOS is an interesting exercise in itself because it is essentially the simplest possible description of the electronic structure beyond the ground state picture," Ceriotti said. "It's also useful because there are many properties that you can compute starting from the DOS, making it a great example of how the next generation of ML models can be used in a similar way as electronic structure calculations, using them in an indirect way to compute intermediate quantities that can then be easily processed to evaluate properties that are harder to learn directly."

In developing the model, the group looked to assure transferability across different phases as well as scalability to large system sizes. Their ultimate approach, which looks at how different atomic configurations affect the distribution of energy levels, meets these goals--it was able to learn and predict DFT-computed DOS for a diverse data set of silicon structures, covering a broad range of thermodynamic conditions and different phases. It also scales linearly, rather than with the cube of the number of atoms as with electronic structure calculations, making it applicable to large structures. Finally, the model allowed for an analysis of the local DOS, giving researchers the chance to examine the interplay between structural motifs and electronic structure.

The combination of transferability, and scalability of predictions to large system sizes, make the model applicable to address long-standing open questions in materials science. The new framework has already been used to elucidate the electronic properties of a 100'000-atoms simulation of amorphous silicon, undergoing a series of phase transitions when compressed to 20 Gpa, in a paper published in Nature today in collaboration with a team comprising researchers from Oxford, Cambridge, the US Naval Research Laboratory and Ohio University. The predicted DOS is also used to explain how the pressure-induced structural transformations couple to the electronic structure of the material.

Combining the new model with one of the well-established potential energy models also makes it possible to compute the electronic contributions to macroscopic properties such as the heat capacity of metals and to perform simulations that take into account finite-electronic-temperature effects - as demonstrated in another soon-to-be published article discussing the high-temperature properties of nickel. Indeed, the new model is a critical step towards MARVEL's goal of developing integrated machine learning models that augment - and perhaps eventually replace - costly electronic structure calculations.

"There are other properties aside from the electron density of states, such as optical excitations, and NMR response, which we have been able to accurately predict with machine learning." Ceriotti said. "If we can use them all in combination with cheap and accurate interatomic potentials it will allow us to describe all of the properties of materials with the same accuracy achieved with electronic structure calculation, but at a tiny fraction of the cost."

National Centre of Competence in Research (NCCR) MARVEL

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to