Social transmission of pain, fear has different targets in mouse brain

January 07, 2021

Social contact can transfer the feeling of pain or fear in several animal species, including humans, but the exact neural mechanisms for this transmission are still being studied. Now, Monique Smith and colleagues demonstrate that the social transmission of pain and pain relief in mice is mediated by neural projections from the brain's anterior cingulate cortex (ACC) to the nucleus accumbens. The transfer of fear, however, is mediated by the ACC's projections into a different area of the brain called the basolateral amygdala. The findings help untangle the distinct neural circuits involved in empathy, which in its simplest form is the ability to "feel" the affective states of others, say the researchers. A better understanding of how empathy is created in the brain "...may teach us about what goes wrong when empathy becomes maladaptive or is hampered as is the case in several psychiatric diseases," Alexandra Klein and Nadine Gogolla note in a related Perspective. In several experiments with mice, Smith et al. show how pain and fear can be socially transferred between affected and "bystander" mice, using a mix of visual, olfactory, and auditory cues. Using optogenetic methods, among others, they traced neuronal activity in the bystander mice to pinpoint exactly how the ACC induces this effect in the brain. The study also demonstrates for the first time that pain relief via an analgesic drug can be transferred socially, possibly offering an interesting model for socially-induced pain relief among humans, the researchers note.

American Association for the Advancement of Science

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to