Nav: Home

A biological solution to carbon capture and recycling?

January 08, 2018

Scientists at the University of Dundee have discovered that E. coli bacteria could hold the key to an efficient method of capturing and storing or recycling carbon dioxide.

Cutting carbon dioxide (CO2) emissions to slow down and even reverse global warming has been posited as humankind's greatest challenge. It is a goal that is subject to considerable political and societal hurdles, but it also remains a technological challenge.

New ways of capturing and storing CO2 will be needed. Now, normally harmless gut bacteria have been shown to have the ability to play a crucial role.

Professor Frank Sargent and colleagues at the University of Dundee's School of Life Sciences, working with local industry partners Sasol UK and Ingenza Ltd, have developed a process that enables the E. coli bacterium to act as a very efficient carbon capture device.

Professor Sargent said, "Reducing carbon dioxide emissions will require a basket of different solutions and nature offers some exciting options. Microscopic, single-celled bacteria are used to living in extreme environments and often perform chemical reactions that plants and animals cannot do.

"For example, the E. coli bacterium can grow in the complete absence of oxygen. When it does this it makes a special metal-containing enzyme, called 'FHL', which can interconvert gaseous carbon dioxide with liquid formic acid. This could provide an opportunity to capture carbon dioxide into a manageable product that is easily stored, controlled or even used to make other things. The trouble is, the normal conversion process is slow and sometime unreliable.

"What we have done is develop a process that enables the E. coli bacterium to operate as a very efficient biological carbon capture device. When the bacteria containing the FHL enzyme are placed under pressurised carbon dioxide and hydrogen gas mixtures - up to 10 atmospheres of pressure - then 100 per cent conversion of the carbon dioxide to formic acid is observed. The reaction happens quickly, over a few hours, and at ambient temperatures.

"This could be an important breakthrough in biotechnology. It should be possible to optimise the system still further and finally develop a `microbial cell factory' that could be used to mop up carbon dioxide from many different types of industry.

"Not all bacteria are bad. Some might even save the planet."

Not only capturing carbon dioxide but storing or recycling it is a major issue. There are millions of tonnes of CO2 being pumped into the atmosphere every year. For the UK alone, the net emission of C02 in 2015 was 404 million tonnes. There is a significant question of where can we put it all even if we capture it, with current suggestions including pumping it underground in to empty oil and gas fields.

"The E. coli solution we have found isn't only attractive as a carbon capture technology, it converts it into a liquid that is stable and comparatively easily stored," said Professor Sargent.

"Formic acid also has industrial uses, from a preservative and antibacterial agent in livestock feed, a coagulant in the production of rubber, and, in salt form, a de-icer for airport runways. It could also be potentially recycled into biological processes that produce CO2, forming a virtuous loop."
-end-
The results of the research are published in the journal Current Biology.

The research has been funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

University of Dundee

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.