Nav: Home

Saving sight: Using AI to diagnose diabetic eye disease

January 08, 2019

Researchers have used artificial intelligence to support the instant diagnosis of one of the top causes of blindness, diabetes-related eye disease, in its earliest stages.

Diabetic retinopathy is the leading cause of vision loss in adults* and its impact is growing worldwide, with 191 million people set to be affected by 2030**.

There are no early-stage symptoms and the disease may already be advanced by the time people start losing their sight. Early diagnosis and treatment can make a dramatic difference to how much vision a patient retains.

Now a team of Australian-Brazilian researchers led by RMIT University have developed an image-processing algorithm that can automatically detect one of the key signs of the disease, fluid on the retina, with an accuracy rate of 98%.

Lead investigator Professor Dinesh Kant Kumar, RMIT, said the method was instantaneous and cost-effective.

"We know that only half of those with diabetes have regular eye exams and one-third have never been checked," Kumar said.

"But the gold standard methods of diagnosing diabetic retinopathy are invasive or expensive, and often unavailable in remote or developing parts of the world.

"Our AI-driven approach delivers results that are just as accurate as clinical scans but relies on retinal images that can be generated with ordinary optometry equipment.

"Making it quicker and cheaper to detect this incurable disease could be life changing for the millions of people who are currently undiagnosed and risk losing their sight."

Fluorescein angiography and optical coherence tomography scans are currently the most accurate clinical methods for diagnosing diabetic retinopathy.

An alternative and cheaper method is analysing images of the retina that can be taken with relatively inexpensive equipment called fundus cameras, but the process is manual, time-consuming and less reliable.

To automate the analysis of fundus images, researchers in the Biosignals Laboratory in the School of Engineering at RMIT, together with collaborators in Brazil, used deep learning and artificial intelligence techniques.

The algorithm they developed can accurately and reliably spot the presence of fluid from damaged blood vessels, or exudate, inside the retina.

The researchers hope their method could eventually be used for widespread screening of at-risk populations.

"Undiagnosed diabetes is a massive health problem here and around the globe," Kumar said.

"For every single person in Australia who knows they have diabetes, another is living with diabetes but isn't diagnosed. In developing countries, the ratio is one diagnosed to four undiagnosed.

"This results in millions of people developing preventable and treatable complications from diabetes-related diseases.

"With further development, our technology has the potential to reduce that burden."

The researchers are in discussions with manufacturers of fundus cameras about potential collaborations to advance the technology.
-end-
The research - with lead author Parham Khojasteh and collaborators from Federal University of Sao Carlos, Federal Institute of Sao Paolo, University of Campinas and Sao Paolo State University - is published in Computers in Biology and Medicine (January 2019, Volume 104).

* Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss (DOI:10.1186/s40662-015-0026-2)

** Psychophysical Exams as Early Indicators of Diabetic Retinopathy (DOI:10.17925/EE.2014.10.01.61)

RMIT University

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
More Diabetes News and Diabetes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...