Nav: Home

Antibiotic resistance in the environment linked to fecal pollution

January 08, 2019

Increased levels of antibiotic resistant bacteria in the environment may have different causes. It could be a consequence of on-site selection from antibiotic residues in the environment, hence promoting the evolution of new forms of resistance. Alternatively, it is simply due contamination by fecal bacteria that often tend to be more resistant than other bacteria. Understanding which explanation is correct is fundamental to manage risks.

A study published in Nature Communications shows that "crAssphage", a virus specific to bacteria in human feces, is highly correlated to the abundance of antibiotic resistance genes in environmental samples. This indicates that fecal pollution can largely explain the increase in resistant bacteria often found in human-impacted environments. There was, however, one clear exception where resistance genes were very common also without the presence of the phage - environments polluted with high levels of antibiotics from manufacturing.

Joakim Larsson, Professor in Environmental Pharmacology at Sahlgrenska Academy, University of Gothenburg, and one of the co-authors:

- These finding are important as they can inform management of human health risks associated with antibiotic resistant bacteria in the environment. While antibiotic residues is clearly the cause for the exceptionally high levels of resistance found near some manufacturing sites, fecal pollution is probably the explanation in most other places.

One may wonder if this means that we do not need to care about the low levels of antibiotics released from e.g. sewage treatment plants world-wide. Larsson comments:

- The study indicates the importance of taking into account the level of fecal pollution when interpreting findings of antibiotic resistance in the environment. It implicates that one often do not need to explain such findings by on-site selection from residual antibiotics. But it does not exclude that there still is selection by low levels of antibiotics in the environment going in in parallel. Other findings still suggest that low, environmental levels of certain antibiotics could select for resistance. This needs further research, says Larsson.
-end-
Title: Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments; https://www.nature.com/articles/s41467-018-07992-3

http://www.biomedicine.gu.se/joakimlarsson

http://www.care.gu.se

University of Gothenburg

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab