Nav: Home

Antibiotic resistance in the environment linked to fecal pollution

January 08, 2019

Increased levels of antibiotic resistant bacteria in the environment may have different causes. It could be a consequence of on-site selection from antibiotic residues in the environment, hence promoting the evolution of new forms of resistance. Alternatively, it is simply due contamination by fecal bacteria that often tend to be more resistant than other bacteria. Understanding which explanation is correct is fundamental to manage risks.

A study published in Nature Communications shows that "crAssphage", a virus specific to bacteria in human feces, is highly correlated to the abundance of antibiotic resistance genes in environmental samples. This indicates that fecal pollution can largely explain the increase in resistant bacteria often found in human-impacted environments. There was, however, one clear exception where resistance genes were very common also without the presence of the phage - environments polluted with high levels of antibiotics from manufacturing.

Joakim Larsson, Professor in Environmental Pharmacology at Sahlgrenska Academy, University of Gothenburg, and one of the co-authors:

- These finding are important as they can inform management of human health risks associated with antibiotic resistant bacteria in the environment. While antibiotic residues is clearly the cause for the exceptionally high levels of resistance found near some manufacturing sites, fecal pollution is probably the explanation in most other places.

One may wonder if this means that we do not need to care about the low levels of antibiotics released from e.g. sewage treatment plants world-wide. Larsson comments:

- The study indicates the importance of taking into account the level of fecal pollution when interpreting findings of antibiotic resistance in the environment. It implicates that one often do not need to explain such findings by on-site selection from residual antibiotics. But it does not exclude that there still is selection by low levels of antibiotics in the environment going in in parallel. Other findings still suggest that low, environmental levels of certain antibiotics could select for resistance. This needs further research, says Larsson.
-end-
Title: Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments; https://www.nature.com/articles/s41467-018-07992-3

http://www.biomedicine.gu.se/joakimlarsson

http://www.care.gu.se

University of Gothenburg

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.