Nav: Home

How herpesviruses shape the immune system

January 08, 2019

Cytomegalovirus is widespread and remains in the body for a lifetime after infection. In healthy individuals, this virus is usually kept in check but can become dangerous when the immune system is weakened or during pregnancy. DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses. This method could help identify gaps in protection early on, and make transplants safer in future.

The human cytomegalovirus (CMV) is globally widespread and the majority of adults are carriers, also in Germany. After an infection, the virus hides in the body for a lifetime, which usually goes unnoticed. However, when the immune system is weakened, as is the case after transplants or when unborn children become infected during pregnancy, it can cause damage to a range of different organs including the nervous system. It is therefore important to find out whether an appropriate immune response against the virus is present in order to prevent such damage from occurring.

Killer T cells detect a broad range of viral targets

Dr Andreas Moosmann heads a DZIF research group at the Helmholtz Zentrum München and is specialised in studying immune responses to viruses. "In healthy humans, cytomegalovirus replication is curbed by T cells in particular," explains Moosmann. Billions of different T cells patrol through our body. Each cell has its own sensor on its surface, a so-called T cell receptor, which is able to identify just a small portion of a specific pathogen. As soon as this sensor is activated, the T cell turns into a killer cell. The infected cell is then killed and the viruses contained within it cannot replicate any longer. "Just by looking at specific T cells in the blood, we can now precisely detect whether a virus is present," says Moosmann. The problem up to now has been that complex techniques challenged such analyses. "Separate tests were required for every individual type of T cell and for each particular specificity," says Moosmann.

One test for many types of viruses

In order to identify viruses more rapidly and precisely, Moosmann and his Munich team of scientists developed a method that enables analysis of millions of T cells with one single test. "We sequence ribonucleic acid (RNA) from the blood samples, through which we can identify existing types of T cell receptors that are specific for different parts of CMV," explains PhD candidate Alina Huth. Using this new method, the scientists were able to identify 1052 CMV-specific T cell receptors in eight healthy virus carriers. In a second group of 352 donors, the scientists measured the prevalence of these sequences, enabling them to very precisely predict infected donors.

The results will be serve to establish a database of virus-specific T cell receptors. According to the scientists, this method can also be used for other viruses. Biologist Dr Xiaoling Liang is convinced that "This diagnostic method will deliver more information at a lower cost and is therefore attractive for clinicians in future. We can now develop a test that can directly determine the immune status for different viruses in one step."

The applications of such a test are manifold. For example, it could be used to predict viral infections in transplant patients and other people with weakened immune systems and enable timely treatment. "We believe this test has great potential. It could, for example, also be used to check if a vaccination has been successful. And it will promote research on the connections between infections, auto-immune diseases and allergies," adds Moosmann.
-end-
Publication

Alina Huth, Xiaoling Liang, Stefan Krebs, Helmut Blum, Andreas Moosmann:
Antigen-Specific TCR Signatures of Cytomegalovirus Infection.
J Immunol December 26, 2018, ji1801401; DOI: https://doi.org/10.4049/jimmunol.1801401

Contact

Dr Andreas Moosmann
Helmholtz Zentrum München and German Center for Infection Research
T +49 89 3187 1202
E-mail: andreas.moosmann@helmholtz-muenchen.de

DZIF Press Office
Karola Neubert and Janna Schmidt
T +531 6181 1170/54
E-mail: presse@dzif.de

At the German Center for Infection Research (DZIF), over 500 scientists from 35 establishments across Germany jointly research new approaches to prevention, diagnosis and treatment of infectious diseases. The aim is to translate research findings into clinical practice rapidly and effectively. With this the DZIF paves the way for developing new vaccines, diagnostics and drugs to treat infections. http://www.dzif.de/

As the German Research Center for Environment Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus, allergies and lung diseases. To this end, it investigates interactions of genetics, environmental factors and lifestyle. Its headquarters are located in Neuherberg in northern Munich. The Helmholtz Zentrum München employs 2,300 staff and is a member of the Helmholtz Association comprising 18 research centres from scientific-technological and medical-biological fields with a total of approximately 37,000 members of staff. http://www.helmholtz-muenchen.de

German Center for Infection Research

Related Immune System Articles:

Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
More Immune System News and Immune System Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab