Nav: Home

Flies release neuronal brakes to fly longer

January 08, 2019

For insects, flying is a swift way of getting around to find food, identify a mate and escape unfavourable conditions. While muscles provide the power for flying, it is the brain that coordinates strategic planning. For a hungry fly, this could mean using its powerful olfaction to sense the presence of food such as a rotten banana and then navigating the distance to reach it, which may require flying for several minutes or even an hour or more. How does the insect brain coordinate the timing for such long flight bouts? A group of scientists at the National Centre for Biological Sciences, Bangalore, have answered this question in the fruit fly Drosophila melanogaster.

In their recent work published in Current Biology, a team led by Prof. Gaiti Hasan and her collaborators describe how groups of different neurons connect up to make insect flight possible for longer periods. One set of neurons release an inherent brake in this circuit, allowing flies to maintain flight for long durations. While mechanical and biophysical aspects of insect flight are well studied, the neurobiology and circuitry underlying it remain poorly understood.

Steffy Manjila, a graduate student in the lab, began this project by first asking what are the types of neurons required to maintain long flight. Neurons talk to each other with chemicals called neurotransmitters. One class of neurotransmitters called monoamines, such as octopamine, dopamine and serotonin are known regulators of insect flight. Particularly, loss of octopaminergic neurons prevents fruit flies from flying for long periods. Steffy recapitulated this earlier finding and used genetic tools available in Drosophila to narrow down which octopaminergic neurons in the fly brain are active during flight. She then hunted for neurons that could be talking to these octopamine neurons and identified a cluster of dopamine producing neurons known as Protocerebral Anterior Medial (PAM) neurons. An elegant imaging experiment showed that activation of octopaminergic neurons generated calcium signals in the PAM neurons, which is a cellular readout of neuronal activity.

To understand how PAM neurons regulate flight bout durations, their projections into a region of the brain called the mushroom body were investigated. This mushroom shaped structure is much like a shopping plaza - a place buzzing with 'activity' and exchange of molecular information. It is well known for its role in learning and memory. The complexity of the mushroom body lies in the fact that one neuronal branch receives inputs from multiple others in its vicinity. These inputs are consolidated by the output neurons, that convey information out of the mushroom body to disseminate composite messages downstream. For example, in the case of flight the mushroom body might balance the state of satiety and hunger with the smell of a ripe banana, to decide how much energy the fly should expend to reach the banana. Steffy identified a class of mushroom body output neurons whose arms were in close proximity to arms of the 'flight modulating' PAM neurons. These output neurons were GABA producing cells, a well-known inhibitory neurotransmitter, which upon binding to its receptor on another neuron would turn it off. Why would the flight circuit have neurons that turn other neurons 'off'? Shouldn't all the neurons be turned 'on' for flight?

"Imagine driving your car down a slope, with your foot on the brakes. If you want to gently roll down the ramp, all you have to do is relax your hold on the brakes. That's exactly what we think could be happening with the flies. At rest, the GABAergic output neurons are active and release GABA. This inhibits flight - brakes pressed. However, soon after initiation of flight, dopaminergic PAM neurons actively inhibit GABAergic neurons, thereby reducing GABA release. The brakes on the flight circuit are now relaxed and this enables the fly to sustain a longer flight bout", explains Dr. Hasan. Overall this mechanism probably helps the fly conserve energy.

The authors substantiated their ideas with a few more experiments. Using genetic tricks, they demonstrated activity in the PAM neurons during flight. Then they artificially turned "on" the dopaminergic PAM neurons and observed that activity of the GABAergic output neurons was silenced. They also made the GABAergic output neurons continuously turned "on" and observed that these flies were unable to fly for long durations. Finally, in a collaboration with the labs of Prof. Sanjay Sane at NCBS and Prof. Jean-Francois Ferveur at Université de Bourgogne Franche-Comté, Dijon, France, they demonstrated that this newly identified circuit is necessary for hungry flies to fly and reach a potential food source, but that it is not required for other free-moving behaviours.

The authors propose that similar neuronal crosstalk enables locomotion in mammals also. For example, it is known that in humans, GABA released from a brain centre called the basal ganglion helps maintain a resting state. When appropriate cues are received, these GABA brakes are released to initiate locomotion. So, if you ever thought brakes were designed only to impede motion, think again. In this biological paradigm, brakes prevent unnecessary flight activity and are relieved only when the fly needs to undertake a long-haul flight!
-end-


National Centre for Biological Sciences

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.