Scientists confirm that chromosomes are formed by stacked layers

January 08, 2019

A new study based on electron microscopy techniques at low temperatures demonstrates that, during mitosis, chromosome DNA is packed in stacked layers of chromatin. The research, published in EMBO Journal, confirms a surprising structure proposed by UAB researchers over a decade ago, but criticized due to the limitations of the technique used.

In the cell nuclei the DNA is bound to histone proteins and forms long chains of nucleosomes that are called chromatin fibers. In the Chromatin Laboratory at the Department of Biochemistry and Molecular Biology of the UAB, directed by Professor Joan-Ramon Daban, it was discovered in 2005 that the chromatin of mitotic chromosomes forms multilaminar plates. This was a surprising result, which has been criticized because it was not expected that linear fibers of chromatin could give rise to planar structures, and because it is based on conventional electron microscopy and atomic force microscopy techniques that require adsorbing the sample, respectively, on flat surfaces of carbon and mica. In addition, in the case of electron microscopy, the sample has to be fixed with chemical crosslinkers, treated with contrasting agents, and dehydrated.

A new study based on electron microscopy under cryogenic conditions, and synchrotron X-ray scattering, published in EMBO Journal, has shown that in mitotic chromosomes the DNA is densely packed forming stacked sheets of chromatin, which are stabilized by interactions between nucleosomes.

The advantage of the cryo-electron microscopy techniques, used in this new study, is that the sample (uncrosslinked and untreated with contrasting agents) is suspended in an aqueous solution that is kept frozen at -180 ° C, even during imaging. Since the structures to be studied are large and complex, in this work cryo-electron tomography was used because this technique allows capturing many images with different tilt angles and, in the end, a three-dimensional reconstruction of the analyzed structures is obtained.

The three-dimensional reconstructions showed that the chromatin emanating from human chromosomes maintained under physiological ionic conditions is planar and forms multilaminar plates. The thickness measurements obtained (single layer 7.5 nm; two layers in contact 13 nm) suggest that the plates are formed by mononucleosome layers, which are interdigitated between them. The complementary X-ray scattering experiments showed a dominant peak at 6 nm, which can be correlated with the distance between layers and between nucleosomes associated through their lateral faces.

There are multilaminar plates that have the dimensions corresponding to the diameter of a human chromosome (600 nm). This suggests that the chromosomes are formed by stacked layers of chromatin that are oriented perpendicular to the axis of the chromosome. This structure is very compact and probably has the function of protecting the integrity of genomic DNA during cell division.
-end-
The research has been led by the Chromatin Laboratory of the UAB (Andrea Chicano, Eva Crosas, and Joan-Ramon Daban). The small-angle X-ray scattering experiments were performed at the beamline NCD-BL11 of the ALBA synchrotron in Cerdanyola del Vallès. The cryotomograms were obtained with the collaboration of Benjamin Engel in the Instruct (EU) cryo-electron microscopy platform at Max-Planck-Institute of Biochemistry in Martinsried (Germany), and the three-dimensional reconstructions were obtained with the collaboration of Joaquín Otón and Roberto Melero at the Instruct image processing platform at the National Center of Biotechnology in Madrid.

Universitat Autonoma de Barcelona

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.