Nav: Home

The new green alternative for drug production

January 08, 2019

For the production of drugs, pesticides and smartphone displays, most of the processes are cost-intensive and generate a large amount of waste. Scientists at the University of Göttingen have now succeeded in developing a resource-saving "green" alternative. The results were published in Nature Catalysis.

The environmentally friendly strategy developed by Professor Lutz Ackermann and his team at the Institute of Organic and Biomolecular Chemistry at the University of Göttingen offers major advantages over existing methods. The naturally occurring non-toxic metal manganese is employed instead of noble transition metals such as palladium or platinum. Traditionally, organic solvents, which are highly flammable and toxic, were also used. In contrast, the new approach makes use of environmentally-friendly water. This is possible because a manganese-carbon bond is formed in the reaction. This bond is considerably more stable than comparable bonds between carbon and the highly reactive metals lithium or magnesium.

"The new process makes it possible to cleave a single strong carbon-carbon bond, of which organic compounds contain a large number, and convert it into the desired product," says Ackermann. In order to achieve the results, experimental laboratory investigations were combined with computer-aided calculations. "This allowed us to gain detailed insight into the exact mode of action of the catalyst. And this in turn enables us to use the process to manufacture other materials."
-end-
Original publication: Hui Wang, Isaac Choi, Torben Rogge, Nikolaos Kaplaneris and Lutz Ackermann, Versatile and robust C-C activation by chelation-assisted manganese catalysis. Nature Catalysis (2018). Doi: https://doi.org/10.1038/s41929-018-0187-1

Contact:

Professor Lutz Ackermann
Institute of Organic and Biomolecular Chemistry
University of Göttingen
Tammannstraße 2, 37077 Göttingen
Tel: +49 551 39-33201
Email: lutz.ackermann@chemie.uni-goettingen.de
Web: http://www.ackermann.chemie.uni-goettingen.de

University of Göttingen

Related Pesticides Articles:

Nanozymes -- efficient antidote against pesticides
Members of the Faculty of Chemistry of the Lomonosov Moscow State University have developed novel nanosized agents -- nanozymes, which could be used as efficient protective and antidote modalities against the impact of neurotoxic organophosphorous compounds: pesticides and chemical warfare agents.
Study examines pesticides' impact on wood frogs
A new study looks at how neonicotinoid pesticides affect wood frogs, which use surface waters in agricultural environments to breed and reproduce.
USDA announces $1.8 million for research on next generation pesticides
The US Department of Agriculture's (USDA) National Institute of Food and Agriculture (NIFA) today announced $1.8 million in available funding to research new, environmentally friendly pesticides and innovative tools and strategies to replace an older treatment, methyl bromide.
Light therapy could save bees from deadly pesticides
Treating bees with light therapy can counteract the harmful effects of neonicotinoid pesticides and improve survival rates of poisoned bees, finds a new UCL study.
The effects of pesticides on soil organisms are complex
There are significant interactions between soil management factors, including pesticide application, with respect to effects on soil organisms.
Pesticides used to help bees may actually harm them
Honeybees from chlorothalanil-treated hives showed the greatest change in gut microbiome.
Research associates some pesticides with respiratory wheeze in farmers
New research from North Carolina State University connects several pesticides commonly used by farmers with both allergic and non-allergic wheeze, which can be a sensitive marker for early airway problems.
Electronic nose smells pesticides and nerve gas
Detecting pesticides and nerve gas in very low concentrations. An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven, Belgium, have made it possible.
Honeybees pick up 'astonishing' number of pesticides via non-crop plants
A Purdue University study shows that honeybees collect the vast majority of their pollen from plants other than crops, even in areas dominated by corn and soybeans, and that pollen is consistently contaminated with a host of agricultural and urban pesticides throughout the growing season.
Common pesticides kill amphibian parasites, study finds
A recent study by Jessica Hua, assistant professor of biological sciences at Binghamton University, and colleagues, explored the effects of six commonly used pesticides on two different populations of a widespread parasite of amphibians.

Related Pesticides Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".