Nav: Home

Study shows algae thrive under Greenland sea ice

January 08, 2019

Microscopic marine plants flourish beneath the ice that covers the Greenland Sea, according to a new study in the Journal of Geophysical Research: Oceans. These phytoplankton create the energy that fuels ocean ecosystems, and the study found that half of this energy is produced under the sea ice in late winter and early spring, and the other half at the edge of the ice in spring.

The researchers pioneered new technology and methods to make this discovery. About 4,000 oceanographic instruments called Argo floats are currently bobbing around the global ocean, moving between the deep sea and surface as they take vital measurements such as water temperature and salinity. This study used some of the first floats equipped to navigate icy waters and measure biogeochemical properties like nutrient concentrations and phytoplankton biomass. The floats sampled in the difficult conditions around and below the Greenland Sea ice continuously for four years, giving the researchers an unprecedented and invaluable look at this previously impenetrable region.

"These floats gave us the opportunity to gather data through the annual cycle and across multiple years, which is crucial for understanding this changing region," said Paty Matrai, Bigelow Laboratory senior research scientist and study author. "We now have an incredible observational dataset and are able to see the full picture of the phytoplankton community through the seasons."

This new approach represents a breakthrough in studying the Greenland Sea, which has historically been difficult. Extensive sea ice and the long polar night prevent both ships and satellites from capturing the huge amount of biological activity under the ice.

Sampling with floats gave the researchers access to this concealed ecosystem. The data they collected revealed that, once light arrives at these northerly latitudes, half of energy production occurs beneath the sea ice, and the other half occurs at the ice edge. In summer, the phytoplankton communities move deeper in the water to access nutrients - another place that cannot be seen by satellites, but can be sampled by floats. These results suggest that previous studies might have significantly underestimated the amount and productivity of phytoplankton in this region.

"By the time the ice has receded and the water is accessible to boats and satellites, half the annual production has already happened," said Nico Mayot, a postdoctoral researcher at Bigelow Laboratory and first author on the paper. "If you only look at those data, you only have half the story. These float data give us the full story, from winter to summer, and from the surface to the deep ocean."

The Greenland Sea is an important transition zone between the North Atlantic and Arctic oceans, both of which are being profoundly impacted by global climate change. The way it functions and changes may have important consequences for how food webs in these waters evolve.

An accurate picture of the phytoplankton community in this important region opens the door for further study, and the researchers have made the project data available to the global scientific community. The researchers anticipate that the under-ice floats will become a key component of Arctic observation and believe that coupling these data with satellite measurements can make it even more powerful.

"Now we are able to ask a whole set of new questions, like whether this pattern is the same elsewhere in the Arctic Ocean," Mayot said. "Understanding how energy is produced in these rapidly changing environments will allow us to anticipate and plan for the future."
-end-
Bigelow Laboratory for Ocean Sciences is an independent, nonprofit research institute on the coast of Maine. Its research ranges from the microscopic life at the bottom of marine food webs to large-scale ocean processes that affect the entire planet. Recognized as a leader in Maine's emerging innovation economy, the Laboratory's research, education, and technology transfer programs are contributing to significant economic growth. Learn more at bigelow.org, and join the conversation on Facebook, Instagram, and Twitter.

Bigelow Laboratory for Ocean Sciences

Related Sea Ice Articles:

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.
Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.
Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.
Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.
Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.
Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.
Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.
Arctic sea ice can't 'bounce back'
Arctic sea ice cannot 'quickly bounce back' if climate change causes it to melt, new research suggests.
Cracks in Arctic sea ice turn low clouds on and off
The prevailing view has been that more leads are associated with more low-level clouds during winter.
Evidence: Antarctica's thinning ice shelves causing more ice to move from land into sea
New study provides the first evidence that thinning ice shelves around Antarctica are causing more ice to move from the land into the sea.
More Sea Ice News and Sea Ice Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.