Nav: Home

Study shows algae thrive under Greenland sea ice

January 08, 2019

Microscopic marine plants flourish beneath the ice that covers the Greenland Sea, according to a new study in the Journal of Geophysical Research: Oceans. These phytoplankton create the energy that fuels ocean ecosystems, and the study found that half of this energy is produced under the sea ice in late winter and early spring, and the other half at the edge of the ice in spring.

The researchers pioneered new technology and methods to make this discovery. About 4,000 oceanographic instruments called Argo floats are currently bobbing around the global ocean, moving between the deep sea and surface as they take vital measurements such as water temperature and salinity. This study used some of the first floats equipped to navigate icy waters and measure biogeochemical properties like nutrient concentrations and phytoplankton biomass. The floats sampled in the difficult conditions around and below the Greenland Sea ice continuously for four years, giving the researchers an unprecedented and invaluable look at this previously impenetrable region.

"These floats gave us the opportunity to gather data through the annual cycle and across multiple years, which is crucial for understanding this changing region," said Paty Matrai, Bigelow Laboratory senior research scientist and study author. "We now have an incredible observational dataset and are able to see the full picture of the phytoplankton community through the seasons."

This new approach represents a breakthrough in studying the Greenland Sea, which has historically been difficult. Extensive sea ice and the long polar night prevent both ships and satellites from capturing the huge amount of biological activity under the ice.

Sampling with floats gave the researchers access to this concealed ecosystem. The data they collected revealed that, once light arrives at these northerly latitudes, half of energy production occurs beneath the sea ice, and the other half occurs at the ice edge. In summer, the phytoplankton communities move deeper in the water to access nutrients - another place that cannot be seen by satellites, but can be sampled by floats. These results suggest that previous studies might have significantly underestimated the amount and productivity of phytoplankton in this region.

"By the time the ice has receded and the water is accessible to boats and satellites, half the annual production has already happened," said Nico Mayot, a postdoctoral researcher at Bigelow Laboratory and first author on the paper. "If you only look at those data, you only have half the story. These float data give us the full story, from winter to summer, and from the surface to the deep ocean."

The Greenland Sea is an important transition zone between the North Atlantic and Arctic oceans, both of which are being profoundly impacted by global climate change. The way it functions and changes may have important consequences for how food webs in these waters evolve.

An accurate picture of the phytoplankton community in this important region opens the door for further study, and the researchers have made the project data available to the global scientific community. The researchers anticipate that the under-ice floats will become a key component of Arctic observation and believe that coupling these data with satellite measurements can make it even more powerful.

"Now we are able to ask a whole set of new questions, like whether this pattern is the same elsewhere in the Arctic Ocean," Mayot said. "Understanding how energy is produced in these rapidly changing environments will allow us to anticipate and plan for the future."
-end-
Bigelow Laboratory for Ocean Sciences is an independent, nonprofit research institute on the coast of Maine. Its research ranges from the microscopic life at the bottom of marine food webs to large-scale ocean processes that affect the entire planet. Recognized as a leader in Maine's emerging innovation economy, the Laboratory's research, education, and technology transfer programs are contributing to significant economic growth. Learn more at bigelow.org, and join the conversation on Facebook, Instagram, and Twitter.

Bigelow Laboratory for Ocean Sciences

Related Sea Ice Articles:

Melting sea ice may lead to more life in the sea
Every year an increasing amount of sea ice is melting in the Arctic.
Sea ice extent sinks to record lows at both poles
The Arctic sea ice maximum extent and Antarctic minimum extent are both record lows this year.
When the sea ice melts, juvenile polar cod may go hungry
Polar cod fulfill a key role in the Arctic food web, as they are a major source of food for seals, whales and seabirds alike.
NASA study improves forecasts of summer Arctic sea ice
The Arctic has been losing sea ice over the past several decades as Earth warms.
Melting sea ice may be speeding nature's clock in the Arctic
Spring is coming sooner to some plant species in the low Arctic of Greenland, while other species are delaying their emergence amid warming winters.
Sea ice hit record lows in November
Unusually high air temperatures and a warm ocean have led to a record low Arctic sea ice extent for November, according to scientists at the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder.
My contribution to Arctic sea ice melt
Measurements reveal the relationship between individual CO2 emissions and the Arctic's shrinking summer sea ice.
See how Arctic sea ice is losing its bulwark against warming summers
Arctic sea ice, the vast sheath of frozen seawater floating on the Arctic Ocean and its neighboring seas, has been hit with a double whammy over the past decades: as its extent shrunk, the oldest and thickest ice has either thinned or melted away, leaving the sea ice cap more vulnerable to the warming ocean and atmosphere.
Tracking the amount of sea ice from the Greenland ice sheet
The Greenland ice sheet records information about Arctic climate going back more than 120.000 years.
Technique could assess historic changes to Antarctic sea ice and glaciers
Historic changes to Antarctic sea ice could be unravelled using a new technique pioneered by scientists at Plymouth University.

Related Sea Ice Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...