Researchers uncover new mechanism of gene regulation involved in tumor progression

January 08, 2019

Genes contain all the information needed for the functioning of cells, tissues, and organs in our body. Gene expression, meaning when and how are the genes being read and executed, is thoroughly regulated like an assembly line with several things happening one after another.

Researchers at the Centre for Genomic Regulation (CRG) in Barcelona, Spain, in collaboration with scientists at the structural bioinformatics group, University Pompeu Fabra (UPF) and department of molecular epigenetics, Helmholtz Center Munich, Germany, have discovered a new step in this line, which controls the expression of some genes with an important role in cancer. "We observed that breast cancer cells need a particular modification to express a set of genes required for cellular proliferation and tumour progression," explains Priyanka Sharma, CRG researcher and first author of the paper. "This modification allows the enzyme RNA polymerase II to overcome a pausing barrier and to continue to transcribe these genes," adds Sharma, who is a Beatriu de Pinós postdoctoral researcher (cofunded by EU Marie Curie Fellowship) and also received funding from Novartis and the CRG internal call for women scientists (Women Scientists Support Grant - WOSS).

Cancer cells are willing to quickly proliferate so, genes involved in cell division and proliferation are really active and usually highly expressed. Such a precise and meticulous machinery involves many different molecules to properly function. In this case, when all the machinery to express proliferation genes is ready, it still has to wait for a particular modification to go. As in race when runners are asked to be ready, set and go. Here, the polymerase is also ready and set but still needs a final modification to cross the barrier for transcription and go.

"Deciphering every single step and all actors involved in this process is an important achievement in terms of fundamental science. We are now able to better understand how an intricate mechanism of gene regulation actually works and this might be a new target for clinical researchers to study novel therapies for certain types of cancer," states Miguel Beato, CRG group leader and principal investigator in this work.

The work, which has been published in Molecular Cell, describes a novel modification of in the Carboxyl terminal domain of RNA Polymerase II, namely the de-imination of an arginine, by the enzyme PADI2, which allows the polymerase to transcribe genes relevant for cancer cell growth. "Most chemo-therapies are oriented at blocking the activity of enzymes, but we know that PADI2 participates in many different processes involving the nervous system, immune response and inflammation, among others. Thus, inhibiting PADI2 would have multiple side effects. Our results make it possible to target just the particular action of PADI2 on RNA polymerase needed for tumour progression without globally blocking the enzyme," explains Beato.
-end-


Center for Genomic Regulation

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.