Nav: Home

Childhood stress of mice affects their offspring behavior

January 08, 2019

Russian neuroscientists discovered that the stress experienced by mice during their first weeks of life, affects not only them but also their offspring. The obtained data will help to understand how negative experience in the early period of life affects the mammalian brain. The results are published in Genes, Brain and Behavior.

Separation from mother is a common early stress model for experimental animals. It is known that mice and rats separated from their mothers during the first weeks of life demonstrate more disturbing behavior and reduced learning abilities compared to their relatives. Although the behavioral consequences of such a negative experience are well studied, it is still not known what molecular and structural changes in the brain are associated with them.

Neurobiologists from Russia suggested that memory and learning deterioration due to early stress is associated with impaired development of the hippocampus. This part of the brain is involved in the memory formation and plays an important role in responding to stress and in regulating the level of anxiety. In one of the hippocampus structures, the dentate gyrus, the formation of new neurons continues even in adult animals. Therefore, hippocampus disorders may lead to many behavioral and cognitive pathologies.

To test their hypothesis, the scientists conducted several successive experiments on female mice. At the first stage, researchers raised three groups of mice. The mice from the first group in the first two weeks of life were daily separated from their mother for three hours, from the second group for fifteen minutes. The third group was the control animals not subjected to any stress. Then all three groups passed learning and memory tests. Several animals from each group were used to study brain tissue while others were used in the third experiment. Once each of them acquired offspring, the scientists checked their behavior.

Behavioral tests showed equal ability to learn in mice from experimental and control groups. Although spatial memory of animals from the first group, which in the first days of life were separated for a long time from their mother, was worse. In addition, these mice showed a less pronounced exploratory behavior when colliding with a new object and had 12% fewer neurons in the hippocampus. Moreover, the scientists have found a noticeable difference in the level of maternal care between different groups of animals which affected their offspring.

"The results of the study confirm that separation from mother during the first two weeks of life adversely affects the development of mice. They reveal a deterioration in memory and learning, maternal behavior is changing," says Natalia Bondar, one of the authors of the work, a senior researcher at the laboratory of the regulation of gene expression at the Institute of Cytology and Genetics, SB RAS. "The most interesting result is the behavioral changes in the second generation of mice, related to their sex. It is unclear what mechanisms change mice offspring behavior. It is important to explore the changes associated with early stress at both the behavioral and molecular levels, as this will allow you to find ways to reduce its negative effect. "
-end-


AKSON Russian Science Communication Association

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".