Nav: Home

Space microbes aren't so alien after all

January 08, 2019

EVANSTON, Ill. --- Microbes stranded in the International Space Station (ISS) are just trying to survive, man.

A new Northwestern University study has found that -- despite its seemingly harsh conditions -- the ISS is not causing bacteria to mutate into dangerous, antibiotic-resistant superbugs.

While the team found that the bacteria isolated from the ISS did contain different genes than their Earthling counterparts, those genes did not make the bacteria more detrimental to human health. The bacteria are instead simply responding, and perhaps evolving, to survive in a stressful environment.

"There has been a lot of speculation about radiation, microgravity and the lack of ventilation and how that might affect living organisms, including bacteria," said Northwestern's Erica Hartmann, who led the study. "These are stressful, harsh conditions. Does the environment select for superbugs because they have an advantage? The answer appears to be 'no.'"

The study was published today (Jan. 8) in the journal mSystems. Hartmann is an assistant professor of environmental engineering in Northwestern's McCormick School of Engineering.

As the conversation about sending travelers to Mars gets more serious, there has been an increasing interest in understanding how microbes behave in enclosed environments.

"People will be in little capsules where they cannot open windows, go outside or circulate the air for long periods of time," said Hartmann. "We're genuinely concerned about how this could affect microbes."

The ISS houses thousands of different microbes, which have traveled into space either on astronauts or in cargo. The National Center for Biotechnology Information maintains a publicly available database, containing the genomic analyses of many of bacteria isolated from the ISS. Hartmann's team used that data to compare the strains of Staphylococcus aureus and Bacillus cereus on the ISS to those on Earth.

Found on human skin, S. aureus contains the tough-to-treat MRSA strain. B. cereus lives in soil and has fewer implications for human health.

"Bacteria that live on skin are very happy there," Hartmann said. "Your skin is warm and has certain oils and organic chemicals that bacteria really like. When you shed those bacteria, they find themselves living in a very different environment. A building's surface is cold and barren, which is extremely stressful for certain bacteria."

To adapt to living on surfaces, the bacteria containing advantageous genes are selected for or they mutate. For those living on the ISS, these genes potentially helped the bacteria respond to stress, so they could eat, grow and function in a harsh environment.

"Based on genomic analysis, it looks like bacteria are adapting to live -- not evolving to cause disease," said Ryan Blaustein, a postdoctoral fellow in Hartmann's laboratory and the study's first author. "We didn't see anything special about antibiotic resistance or virulence in the space station's bacteria."

Although this is good news for astronauts and potential space tourists, Hartmann and Blaustein are careful to point out that unhealthy people can still spread illness on space stations and space shuttles.

"Everywhere you go, you bring your microbes with you," Hartmann said. "Astronauts are exceedingly healthy people. But as we talk about expanding space flight to tourists who do not necessarily meet astronaut criteria, we don't know what will happen. We can't say that if you put someone with an infection into a closed bubble in space that it won't transfer to other people. It's like when someone coughs on an airplane, and everyone gets sick."
-end-
"Pangenomic approach to understanding microbial adaptations within a model built environment, the International Space Station, relative to human hosts and soil" was supported by the Searle Leadership Fund and the National Institutes of Health (award number TL1R001423).

Northwestern University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".