Ancient gene duplication gave grasses multiple ways to wait out winter

January 08, 2019

MADISON, Wis. -- If you've ever grown carrots in your garden and puzzled over never once seeing them flower, don't blame your lack of a green thumb.

Carrots, beets and many other plants won't flower until they've gone through winter. The extended cold gives them the signal to flower quickly once spring arrives, providing the plants an edge in the race to produce seeds.

But cold isn't always required. In the 1930s, two English scientists discovered that some crops in the grass family, like rye or wheat, can use short days instead of cold to tell them when winter has come.

"But nothing was known about how it works," says Rick Amasino, a professor of biochemistry and genetics at the University of Wisconsin-Madison.

Now, more than 80 years later, Daniel Woods and others in Amasino's group have finally discovered how grasses count the short days of winter to prepare for flowering. In most plants, a protein called florigen induces flowering during the lengthening days of spring and summer. Grasses have multiple copies of the florigen gene, thanks to an ancient duplication in their genomes. One of those copies has been repurposed to be expressed during the short days of winter, giving some grasses a new way to prepare for spring.

The work is published Jan. 8 in the journal eLife. The new research provides valuable insight into how winter-adapted grasses gain the ability to flower in spring, which could be helpful for improving crops, like winter wheat, that rely on this process.

Vernalization, the requirement for a period of cold before flowering can take place, evolved multiple times in diverse plant families. Scientists believe that vernalization allows plants to fill a new niche, one where they store up energy one year and flower quickly the next spring before they get shaded out or outcompeted by other plants. In the past, Amasino and his group have identified genes regulating vernalization in a member of the cabbage family known as Arabidopsis.

To get at the use of daylength as a winter signal, Amasino's group turned to Brachypodium, a grass used in the lab that is related to crops like corn, rice and wheat. They found that, out of 51 varieties of Brachypodium, 40 could sense short days as a sign of winter, showing there was variation for this trait among the varieties.

"If you have variation, you can do genetics," says Amasino, who is a member of the Great Lakes Bioenergy Research Center, a U.S. Department of Energy-funded institute headquartered at UW-Madison.

The researchers pinpointed the cause of that variation to a single letter change in a single gene that is one of 14 duplicates of the florigen gene.

The team found that the duplicate, named FTL9, has evolved to act as a sort of inverse of its parent gene florigen. Where florigen builds up in leaves during long days to cause flowering, FTL9 accumulates during the short days of winter. While enough florigen makes flowering inevitable, FTL9 only makes flowering possible by releasing the brakes on florigen once spring arrives.

Amasino ventures that whether plants have evolved to track winter via cold or short days depends on where they take root. In warmer climates, the sun may be a better signal of winter than temperature is. But in colder regions, it might be best to wait for the very last danger of frost to pass before investing in fragile flowers. In support of this idea, the Brachypodium adapted to follow short days were mostly collected from the balmy Mediterranean.

Better understanding how plants have evolved systems to mark the end of winter may help scientists keep crops productive, especially in a warming climate. Because as growing regions heat up, crops that follow the sun will always reliably track the seasons, even if winter's chill falters.
-end-
This work was supported by the Great Lakes Bioenergy Research Center (grants DE-SC0018409 and DE- FC02-07ER6449), the National Science Foundation (grant IOS- 1258126) and the National Institutes of Health.

Eric Hamilton, (608) 263-1986, eshamilton@wisc.edu

University of Wisconsin-Madison

Related Genetics Articles from Brightsurf:

Human genetics: A look in the mirror
Genome Biology and Evolution's latest virtual issue highlights recent research published in the journal within the field of human genetics.

The genetics of blood: A global perspective
To better understand the properties of blood cells, an international team led by UdeM's Guillaume Lettre has been examining variations in the DNA of 746,667 people worldwide.

Turning to genetics to treat little hearts
Researchers makes a breakthrough in understanding the mechanisms of a common congenital heart disease.

New drugs more likely to be approved if backed up by genetics
A new drug candidate is more likely to be approved for use if it targets a gene known to be linked to the disease; a finding that can help pharmaceutical companies to focus their drug development efforts.

Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties

Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.

The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.

New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.

Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.

New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.

Read More: Genetics News and Genetics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.