Nav: Home

Scientists discover a process that stabilizes fusion plasmas

January 08, 2019

Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous.

Replicating fusion, which releases boundless energy by fusing atomic nuclei in the state of matter known as plasma, could produce clean and virtually limitless power for generating electricity for cities and industries everywhere. Capturing and controlling fusion energy is therefore a key scientific and engineering challenge for researchers across the globe.

Creating magnetic islands

The PPPL finding, reported in Physical Review Letters, focuses on so-called tearing modes -- instabilities in the plasma that create magnetic islands, a key source of plasma disruptions. These islands, bubble-like structures that form in the plasma, can grow and trigger disruptive events that halt fusion reactions and damage doughnut-shaped facilities called "tokamaks" that house the reactions.

Researchers found in the 1980s that using radio-frequency (RF) waves to drive current in the plasma could stabilize tearing modes and reduce the risk of disruptions. However, the researchers failed to notice that small changes -- or perturbations -- in the temperature of the plasma could improve the stabilization process, once a key threshold in power is exceeded. The physical mechanism that PPPL has identified works like this:
  • The temperature perturbations affect the strength of the current drive and the amount of RF power deposited in the islands.

  • The perturbations and their impact on the deposition of power feedback against each other in a complex -- or nonlinear -- manner.

  • When the feedback combines with the sensitivity of the current drive to temperature perturbations, the efficiency of the stabilization process increases.

  • Furthermore, the improved stabilization is less to likely to be affected by misaligned current drives that fail to hit the center of the island.

The overall impact of this process creates what is technically called "RF current condensation," or concentration of RF power inside the island that keeps it from growing. "The power deposition is greatly increased," said Allan Reiman, a theoretical physicist at PPPL and lead author of the paper. "When the power deposition in the island exceeds a threshold level, there is a jump in the temperature that greatly strengthens the stabilizing effect. This allows the stabilization of larger islands than previously thought possible."

Beneficial to ITER

This process can be particularly beneficial to ITER, the international tokamak under construction in France to demonstrate the feasibility of fusion power. "There is worry about islands getting large and causing disruptions in ITER," Reiman said. "Taken together, these new effects should make it easier to stabilize ITER plasmas."

Reiman worked with Professor Nat Fisch, associate director for academic affairs at PPPL and coauthor of the report. Fisch had demonstrated in a landmark 1970s paper that RF waves could be used to drive currents to confine tokamak plasmas through a process now called "RF current drive."

Fisch points out how "it was Reiman's groundbreaking paper in 1983 that predicted that these RF currents could also stabilize tearing modes. The use of RF current drive for stabilization of tearing modes was perhaps even more crucial to the tokamak program than using these currents to confine the plasma," Fisch said.

"Hence," he said, "Reiman's 1983 paper essentially launched experimental campaigns on tokamaks worldwide to stabilize tearing modes." Moreover, he added, "Significantly, in addition to predicting the stabilization of tearing modes by RF, the 1983 paper also pointed out the importance of the temperature perturbation in magnetic islands."

Underappreciated feature

The new paper takes a fresh look at the impact of these temperature perturbations on the islands, a feature which has been underappreciated since the 1983 paper pointed to it. "We basically went back 35 years to carry that thought just a bit further by exploring the fascinating physics and larger implications of positive feedback," Fisch said. "It turned out that these implications might now be very important to the tokamak program today."

The theoreticians began their recent work with a simple model and advanced to more complex ones to address the key issues. They now plan to produce a more detailed picture with still-more sophisticated models. They are also working to suggest experimental campaigns that will expose these new effects. Support for this research comes from the DOE Office of Science.
-end-
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Princeton Plasma Physics Laboratory

Related Plasma Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
Getting the biggest bang out of plasma jets
Capillary discharge plasma jets are created by a large current that passes through a low-density gas in what is called a capillary chamber.
Neptune: Neutralizer-free plasma propulsion
Plasma propulsion concepts are gridded-ion thrusters that accelerate and emit more positively charged particles than negatively charged ones.
UCLA researchers discover a new cause of high plasma triglycerides
People with hypertriglyceridemia often are told to change their diet and lose weight.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
New feedback system could allow greater control over fusion plasma
A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.
PPPL scientist uncovers physics behind plasma-etching process
PPPL physicist Igor Kaganovich and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Anti-tumor effect of novel plasma medicine caused by lactate
Nagoya University researchers developed a new physical plasma-activated salt solution for use as chemotherapy.
Clarifying the plasma oscillation by high-energy particles
The National Institute for Fusion Science has developed a new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds.

Related Plasma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".