New catalysts for better fuel cells

January 08, 2019

Researchers at Daegu Gyeongbuk Institute of Science & Technology (DGIST) have developed nano-catalysts that can reduce the overall cost of clean energy fuel cells, according to a study published in the journal of Applied Catalysis B: Environmental.

Polymer electrolyte membrane fuel cells (PEMFCs) transform the chemical energy produced during a reaction between hydrogen fuel and oxygen into electrical energy. While PEMFCs are a promising source of clean energy that is self-contained and mobile - much like the alkaline fuel cells used on the US Space Shuttle - they currently rely on expensive materials. Also, the substances used for catalysing these chemical reactions degrade, raising concerns about reusability and viability.

DGIST energy materials scientist Sangaraju Shanmugam and his team have developed active and durable catalysts for PEMFCs that can reduce the overall manufacturing costs. The catalysts were nitrogen-doped carbon nanorods with ceria and cobalt nanoparticles on their surfaces; essentially carbon nanorods containing nitrogen, cobalt and ceria. Ceria (CeO2), a combination of cerium and oxygen, is a cheap and environmentally friendly semiconducting material that has excellent oxygen reduction abilities.

The fibres were made using a technique known as electrospinning, in which a high voltage is applied to a liquid droplet, forming a charged liquid jet that then dries midflight into uniform, nanosized particles. The researchers' analyses confirmed that the ceria and cobalt particles were uniformly distributed in the carbon nanorods and that the catalysts showed enhanced electricity-producing capacity.

The ceria-supported cobalt on nitrogen-doped carbon nanorod catalyst was found to be more active and durable than cobalt-only nitrogen-doped carbon nanorods and platinum/carbon. They were explored in two important types of chemical reactions for energy conversion and storage: oxygen reduction and oxygen evolution reactions.

The researchers conclude that ceria could be considered among the most promising materials for use with cobalt on nitrogen-doped carbon nanorods to produce stable catalysts with enhanced electrochemical activity in PEMFCs and related devices.
-end-
For more information, please contact:
Associate Professor Sangaraju Shanmugam
Department of Energy Science and Engineering
Daegu Gyeongbuk Institute of Science and Technology (DGIST)
E-mail: sangarajus@dgist.ac.kr

Associated Links

Research Paper on Journal of Applied Catalysis B: Environmental
Advanced Energy Materials Laboratory Research Group

Journal Reference

Arumugam Sivanantham, Pandian Ganesan, and Sangaraju Shanmugam, " A synergistic effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability", Applied Catalysis B: Environmental, December 2018

DGIST (Daegu Gyeongbuk Institute of Science and Technology)

Related Chemical Reactions Articles from Brightsurf:

Shedding light on how urban grime affects chemical reactions in cities
Many city surfaces are coated with a layer of soot, pollutants, metals, organic compounds and other molecules known as ''urban grime.'' Chemical reactions that occur in this complex milieu can affect air and water quality.

Seeing chemical reactions with music
Audible sound enables chemical coloring and the coexistence of different chemical reactions in a solution.

Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.

New NMR method enables monitoring of chemical reactions in metal containers
Scientists have developed a new method of observing chemical reactions in metal containers.

Levitating droplets allow scientists to perform 'touchless' chemical reactions
Levitation has long been a staple of magic tricks and movies.

Predicting unpredictable reactions
New research from the University of Pittsburgh's Swanson School of Engineering, in collaboration with the Laboratory of Catalysis and Catalytic Processes (Department of Energy) at Politecnico di Milano in Milan, Italy, advances the field of computational catalysis by paving the way for the simulation of realistic catalysts under reaction conditions.

First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.

Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.

Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Read More: Chemical Reactions News and Chemical Reactions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.