Fighting another virus? Blame your parents

January 08, 2019

Genetics may play a bigger role in the body's disease-fighting ability than scientists previously thought, according to the results from a new study of twins in Queensland, Australia.

Scientists have long known that people build their own immune defence networks using antibodies - which are disease-fighting molecules that are deployed when our bodies are exposed to different viruses and other pathogens.

There is strong evidence, however, that genetic factors play a key role in how effectively and efficiently the body builds and deploys these disease-fighting molecules.

Researchers from James Cook University's Australian Institute of Tropical Health and Medicine (AITHM) and the University of Queensland's (UQ) Diamantina Institute have analysed blood samples from 1835 twins and thousands of their siblings.

The participants were recruited as part of the Brisbane Adolescent Twin Sample (BATS, also known as the Brisbane Longitudinal Twin Study; BLTS) conducted at the QIMR Berghofer Medical Research Institute (QIMRB).

AITHM Principal Research Fellow, Associate Professor John Miles of JCU said the team looked at the body's immune response to six common human viruses, including the Human Herpes virus, Parvovirus, Epstein Barr virus and the Coxsackie virus.

"We were surprised to see that the 'power' of your immune system is predominantly controlled by the genes passed down from your mother or father," said Associate Professor Miles.

"These genes determine whether you mount an intense or weak immune response when confronted with a viral infection."

Professor David Evans, from UQ's Diamantina Translational Research Institute said environmental factors shared between the twins appeared to be more important in determining whether individuals had been exposed, and generated an antibody response, to a virus in the first place.

"The classic twin study compares trait similarity between identical twins, (who are derived from the same fertilised egg and therefore share identical genomes), with the trait similarity between fraternal twins (who are derived from different eggs and therefore are as genetically similar to each other as ordinary siblings)," said Professor Evans.

"Demonstrating that antibody response is heritable is the first step in the eventual identification of individual genes that affect antibody response."

The next step in the research is to identify the exact genes that are involved in tuning the strength of the immune response, said Dr Miles.

"If we can identify these genes we can imitate 'super defenders' when we design next generation vaccines. Likewise, if we can identify the genes that are failing in an immune response we could possibly correct that dysfunction using immunomodulation," he said.

Professor Evans said the findings had very important implications for research into auto-immune disease.

"In the future, we are interested in seeing whether the genes that affect antibody response to particular viruses are also the same genes that affect risk of autoimmune disease (diseases where the body's immune system attacks itself).

"Demonstrating that the same genes underlie both response to viral infection and risk of autoimmune disease would provide powerful evidence that infection by certain viruses are involved in triggering or maintaining disease."

Queensland Minister for Science Leeanne Enoch said these results showed the high quality of science being conducted in Queensland. "It is wonderful that Queensland scientists have been able to generate ground-breaking research such as this," Ms Enoch said.

"These results highlight the importance of scientific collaboration and shows how Queensland is a leader in science and innovation."

The research was published in The Journal of Allergy and Clinical Immunology and was conducted in partnership with JCU's AITHM, UQ's Diamantina Institute and QIMRB. The work was supported by the National Health and Medical Research Council of Australia (NHMRC) and the Australian Infectious Diseases Network.
-end-


James Cook University

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.