Scientists improve yield predictions based on seedling data

January 08, 2020

EAST LANSING, Mich. - A doctor diagnosing a 50-year-old patient based on a blood test taken during the patient's infancy would be unthinkable.

Anecdotally speaking, however, that's what Michigan State University scientists have done with corn. Using plant RNA data from 2-week-old corn seedlings, Shinhan Shiu, professor of plant biology and computational mathematics, science and engineering, has shown that farmers and scientists can improve adult crop trait predictions with accuracy that rivals current approaches using DNA, i.e. genetic data.

"Traditional breeding methods take months to years, which can be saved if we can predict the desirable traits just from DNA and RNA without growing them, without having to measure the actual traits directly," said Shiu, senior author of the paper appearing in the current issue of The Plant Cell. "To continue the human medicine anecdote, it's like sequencing an infant's RNA and analyzing what sort of traits the infant may develop later in life."

Shiu has long been fascinated with using computational approaches to resolve evolution and genome biology questions. A well-recognized grand challenge in biology is how to connect information in the DNA, or genotype, with traits, or phenotype. Solving this mystery is fundamental to understanding how genetic information is translated into outward traits in any species, Shiu said.

Since RNA is a product of DNA, one step closer to the traits DNA ultimately influences, the RNA blueprints can potentially offer better predictions. Using machine learning approaches, Shiu and his colleagues have taken a step closer to connecting DNA, RNA and the underlying traits.

"This is helpful for new breeding programs and may have implications in new ways to do genetic testing," Shiu said. "We found that RNA measurements provide additional information that we cannot get from DNA alone." In terms of reproduction, for example, the team was able to make accurate flowering and yield predictions¬ - even before the plants had developed their seed or flower organisms.

Traditional methods using genetic marker-based models identified only one of 14 known genes linked to flowering time as important. However, the gene expression-based model created by Shiu and his colleagues identified five.

Even with this increased accuracy, though, Shiu's team isn't saying the new method should replace the old.

"Our findings are complementary to genetic marker-based prediction and identifies gene expression-trait associations that are not explained by genetic markers," Shiu said. "Not only does this help in selection of breeding lines with desirable traits, but also enhances our understanding of the mechanisms involved in these processes."

Future research will work to improve the model's accuracy, efficiency and cost.
Additional MSU scientists contributing to the study include Christina Azodi, Jeremy Pardo, Robert VanBuren and Gustavo de los Campos.

(Note for media: Please include a link to the original paper in online coverage:

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at

Michigan State University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to