Nav: Home

Can sea star movement inspire better robots?

January 08, 2020

Have you ever seen a sea star move? To many of us, sea star seem motionless, like a rock on the ocean's floor, but in actuality, they have hundreds of tube feet attached to their underbelly. These feet stretch and contract to attach to rough terrain, hold on to prey and, of course, move.

Any one tube foot on a sea star can act autonomously in responding to stimuli, but coupled together, they can synchronize their motion to produce a bouncing motion -- their version of running. For years, researchers have wondered exactly how a sea star accomplishes this synchronization, given it has no brain and a completely decentralized nervous system.

The answer, from researchers at the USC Viterbi School of Engineering, was published today in the Journal of the Royal Society Interface: sea star couple a global directionality command from a "dominant arm" with individual, localized responses to stimuli to achieve coordinated locomotion. In other words, once the sea star provides an instruction on which way to move, the individual feet figure out how to achieve this on their own, without further communication.

The researchers, including Professor Eva Kanso in USC Viterbi's Department of Aerospace and Mechanical Engineering and Sina Heydari, a USC Viterbi Ph.D. candidate, were joined by Matt McHenry, associate professor of ecology and evolutionary biology at the University of California, Irvine; Amy Johnson, professor of marine biology at Bowdoin College; and Olaf Ellers, research associate in biology and mathematics at Bowdoin College.

The work builds on an existing hierarchal model of behavior, but goes further in explaining how much of sea star locomotion happens locally versus globally.

"The nervous system does not process everything in the same place at the same time, but relies on the idea that the sea star is competent and will figure it out," said Kanso, a Zohrab A. Kaprielian Fellow in Engineering. "If one tube foot pushes against the ground, the others will feel the force. This mechanical coupling is the only way in which one tube foot shares information with another."

A third model of locomotion

The nervous system of a sea star is characterized by a nerve ring that surrounds its mouth and connects to each individual arm through a radial nerve. The muscles of each tube foot are stimulated by neurons connected to the radial and ring nerves.

All feet step in the same direction while crawling, but their movement is not synchronized. However, when achieving the bouncing gait, sea star seem to coordinate tens of feet into two or three synchronized groups. The research team, led by Kanso, looked at both modes of motion, and the transition between them. The result is a model that describes how much of a sea star's locomotion is determined by local sensory-motor response at the tube feet level versus global sensory-motor commands.

In the animal world, behavior is often described by one of two prevailing models of locomotion; behavior such as insect flight is the result of sensory feedback traveling through a central processing system, which sends a message activating a response, or it is the result of completely decentralized, individual responses to sensory information such as in fish schools or ant colonies.

Neither of these models seem to describe the motion of a sea star.

"In the case of the sea star, the nervous system seems to rely on the physics of the interaction between the body and the environment to control locomotion. All of the tube feet are attached structurally to the sea star and thus, to each other."

In this way, there is a mechanism for "information" to be communicated mechanically between tube feet. An individual tube foot would only need to sense its own state (proprioception) and respond accordingly. Because its state is coupled mechanically to other tube feet, they work together collectively. As the tube feet begin to move, each produces an individual force that becomes a part of the sensory environment. In this way, each tube foot is also responding to the forces produced by other tube feet and eventually, they establish a rhythm with each other.

This is similar to other mechanical models of coordination. For example, take a set of mechanical metronomes, devices used to help keep rhythm or time for a musician. You can start a set of 10 at all different phases, resting them on the same flat surface. Over time, they will synchronize. At play is the mechanical coupling effect seen with the sea star; each metronome is mechanically interacting with the phases created by the other metronomes and as such, is effectively "communicating" with the other metronomes until they begin to beat in complete rhythm and synchrony.

How sea star behavior can help us design more efficient robotics systems

Understanding how a distributed nervous system, like that of a sea star, achieves complex, coordinated motions could lead to advancements in areas such as robotics. In robotics systems, it is relatively straightforward to program a robot to perform repetitive tasks. However, in more complex situations where customization is required, robots face difficulties. How can robots be engineered to apply the same benefits to a more complex problem or environment?

The answer might lie in the sea star model, Kanso said. "Using the example of a sea star, we can design controllers so that learning can happen hierarchically. There is a decentralized component for both decision-making and for communicating to a global authority. This could be useful for designing control algorithms for systems with multiple actuators, where we are delegating a lot of the control to the physics of the system -- mechanical coupling -- versus the input or intervention of a central controller."

Next, Kanso and her team will look at how the global directionality command arises in the first place and what happens if there are competing stimuli.
-end-
The work is partially supported by a Basic Research Center Grant from the Office of Naval Research, ONR Award Number: N00014-17-1- 2062.

University of Southern California

Related Nervous System Articles:

Fewer scars in the central nervous system
Researchers have discovered the influence of the coagulation factor fibrinogen on the damaged brain.
Polymerized estrogen shown to protect nervous system cells
In research published today in Nature Communications, an interdisciplinary team from Rensselaer Polytechnic Institute demonstrated how estrogen -- a natural hormone produced in the body -- can be polymerized into a slow-releasing biomaterial and applied to nervous system cells to protect those cells and even promote regeneration.
Discovery concerning the nervous system overturns a previous theory
It appears that when our nervous system is developing, only the most viable neurons survive, while immature neurons are weeded out and die.
Autonomic nervous system appears to function well regardless of mode of childbirth
'In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,' says Sarah B.
First step to induce self-repair in the central nervous system
Injured axons instruct Schwann cells to build specialized actin spheres to break down and remove axon fragments, thereby starting the regeneration process.
First complete wiring diagram of an animal's nervous system
In a study published online today in Nature, researchers at Albert Einstein College of Medicine describe the first complete wiring diagram of the nervous system of an animal, the roundworm Caenorhabditis elegans, used by scientists worldwide as a model organism.
Scientists unlock new role for nervous system in regeneration
Biologists have developed a computational model of flatworm regeneration to answer an important question in regeneration research - what are the signals that determine the rebuilding of specific anatomical structures?
Research gives new insight into the evolution of the nervous system
Pioneering research has given a fascinating fresh insight into how animal nervous systems evolved from simple structures to become the complex network transmitting signals between different parts of the body.
Researchers solve mystery of how ALL enters the central nervous system
A research team led by Duke Cancer Institute scientists has found that this blood cancer infiltrates the central nervous system not by breaching the blood-brain barrier, but by evading the barrier altogether.
The VIPs of the nervous system
Biologists at Washington University in St Louis unlocked a cure for jet lag in mice by activating a small subset of the neurons involved in setting daily rhythms.
More Nervous System News and Nervous System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.