New study reveals the origin of complex malaria infections

January 08, 2020

San Antonio, Texas (January 8, 2020) - New technology employing single cell genome sequencing of the parasite that causes malaria has yielded some surprising results and helps pave the way for possible new intervention strategies for this deadly infectious disease, according to Texas Biomedical Research Institute Assistant Professor Ian Cheeseman, Ph.D. Dr. Cheeseman was Principal Investigator of a three-year study published in the January 2020 edition of Cell Host & Microbe, a high-impact peer-reviewed publication.

Malaria is caused by Plasmodium parasites spread to people by the bite of infected Anopheles mosquitoes.

"We don't know what is inside malaria infections," Dr. Cheeseman said. "We don't know how many different genetically distinct strains of parasites there are. We don't know how related they are to each other. We don't know how many mosquitoes they came from."

To help answer these questions, Dr. Cheeseman and his collaborators turned to single cell genome sequencing. Using this technology, individual malaria parasite cells are isolated and their genome amplified before being analyzed by a genome sequencer. Single cell sequencing allows researchers to capture the genetic mutations present in a single cell, and has been adopted by cancer researchers to understand how tumors evolve. This is the first time the technology was used to study malaria transmission.

Dr. Cheeseman and his international team studied single malaria-infected cells from malaria patients in Malawi, a country heavily burdened by this infectious disease. Malaria patients, who donated malaria-infected blood samples used in this study reside in Chikhwawa, a region with a large mosquito population. In this region, people may be bitten by a malaria-infected mosquito every 48 hours.

The single cell sequencing approach applied in this study provides a fresh picture of how often bites from an infected mosquito lead to a malaria infection. What researchers discovered went against conventional wisdom. Nearly all the infections they studied likely came from one mosquito bite.

"We found that complex malaria infections are predominantly caused by a single mosquito bite transmitting many genetically diverse but related parasites into the blood stream of a patient," Dr. Standwell Nkhoma, lead author on the study and a Malawian national, stated.

Knowing this enables scientists to design more effective interventions to block mosquitoes from spreading malaria and build more sophisticated models to predict the spread of antimalarial drug resistance and malaria transmission patterns. The rise of antimalarial drug resistance is a major threat to malaria control globally as resistance to the antimalarial drugs artemisinin and piperaquine continue to spread.

Malaria infects an estimated 200 million people worldwide each year and kills more than 400,000 people, most of them children, according to the World Health Organization. "Any strides we can make in understanding this disease will make an enormous impact," Dr. Cheeseman concluded.
-end-
This study was supported by a Wellcome Trust Intermediate Fellowship in Tropical Medicine and Public Health Grant (099992/Z/12/Z) and an NIH grant (NIAID AI110941-01A1). FACS data were generated in the Flow Cytometry Shared Resource Facility, supported by UTHSCSA, NIH-NCI P30 CA054174, UL1RR025767 (CTSA).

Texas Biomed is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. The Institute is home to the Southwest National Primate Research Center (SNPRC) and provides broad services in primate research. SNPRC contributes to a national network of National Primate Research Centers (NPRCs) with specialized technologies, capabilities and primate resources, many of which are unique to the SNPRC. The Center also serves investigators around the globe with research and technical procedures for collaborative projects. For more information on Texas Biomed, go to http://www.TxBiomed.org or for more information on SNPRC, visit http://www.SNPRC.org.

Texas Biomedical Research Institute

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.