Bioenergetics: New features of ATP synthase

January 08, 2021

The mitochondrial ATP synthase is energy-converting macromolecular machine that uses the electrochemical potential across the bioenergetic membrane called cristae. This potential is maintained via a membrane curvature that is induced by ATP synthase assembled in dimers. The dimers shaping the bioenergetic membrane were thought to be universal across the eukaryotic organisms. Two newly published cryo-EM studies by Kock-Flygaard et al and Mühleip et al from Alexey Amunts lab, identify different types of ATP synthase organization.

The structure of the ATP synthase from ciliates revealed a dimer, which unlike in all the previously investigated complexes, the two membrane-embedded parts are not identical to each other. The commonly observed symmetry is broken by the accommodation of a single subunit at the dimer interface that anchors an inhibitor. In addition, the ATP synthase has an unusual U-shape arrangement, and thus the generation of the membrane curvature is achieved through tetramerization. Therefore, this work defines ATP synthase tetramer as the intact structural unit propagating cristae formation in ciliates.

The investigation of the infectious apicomplexan parasites Toxoplasma, revealed that their ATP synthase is arranged in cyclic hexamers. However, within the hexamer, the lipid bilayer turns out to be near-planar, which is not sufficient to shape the bioenergetic membrane. Therefore, the cryo-electron tomography approach was applied to the native membranes isolated from the parasites' mitochondria, which revealed that the hexamers are further arranged in a higher order of organization. Particularly, 20 units of ATP synthase are linked together in large arrays with icosahedral symmetry. They form pentagonal pyramids at the size of 20 mega-Dalton. In the center of each pyramid, hexamer ATP synthase planes are oriented by 40°. Therefore, the mechanism of pentagonal pyramids generates cristae morphology in a way that differs from the canonical dimers thought to be universal.

Finally, the structural studies identified a key subunit ATPTG11 holding the hexamers together. A removal of the subunit showed loss of pentagonal pyramids, aberrantly shaped cristae, and defective growth of the parasites. This demonstrates that the unique macromolecular arrangement is critical for the maintenance of bioenergetics in Apicomplexa.

Together, these studies illustrate the structural basis for the diversity of the membrane-shaping properties of mitochondrial ATP synthases. This suggests that the fundamental mechanism of the ATP synthase association varies between eukaryotic lineages.
-end-
References:

Flygaard RK, Mühleip A, Tobiasson V, Amunts A. Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization. Nature communications. 2020; 11.

Muhleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nature communications. 2021; 12.

SciLifeLab is a joint enterprise of Swedish universities that provides frontline technologies and develop cutting-edge research programs. Situated on the expanding Stockholm biomedical campus, SciLifeLab offers the opportunity to work in an internationally competitive and synergistic environment. The Laboratory combines technical expertise with advanced knowledge of molecular biology and translational medicine.

Science For Life Laboratory

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.