Where am I? How our brain works as a GPS device

January 09, 2009

We've all experienced the feeling of not knowing where we are. Being disoriented is not pleasant, and it can even be scary, but luckily for most of us, this sensation is temporary. The brain employs a number of tricks to reorient us, keeping our confusion to a minimum and quickly pointing us in the right direction. Research has suggested that animals and young children mainly rely on geometric cues (e.g. lengths, distances, angles) to help them get reoriented. Human adults, however, can also make use of feature cues (e.g. color, texture, landmarks) in their surrounding area. But which method do we use more often? Psychologists Kristin R. Ratliff from the University of Chicago and Nora S. Newcombe from Temple University conducted a set of experiments investigating if human adults have a preference for using geometric or feature cues to become reoriented.

The first experiment took place in either a large or small white, rectangular room with a landmark (a big piece of colorful fabric) hanging on one wall. The study volunteers saw the researcher place a set of keys in a box in one of the corners. The volunteers were blindfolded and spun around, to become disoriented. After removing the blindfold, they had to point to the corner where the keys were. After a break, the volunteers were told the experiment would be repeated, although they wouldn't watch the researcher hide the keys. Unbeknownst to them, during the break the researchers moved the landmark to an adjacent wall--this change forced the volunteers to use either geometric cues or feature cues, but not both, to reorient themselves and locate the keys. For the second experiment, the researchers used a similar method, except they switched room sizes (the volunteers moved from a larger room to a smaller room and vice versa) during the break.

The results, reported in Psychological Science, a journal of the Association for Psychological Science, reveal that the brain does not have a distinct preference for certain cues during reorientation. In the first experiment, volunteers reoriented themselves by using geometric cues in the smaller room but used feature cues in the larger room. However, the volunteers who went from the larger room to the smaller room in the second experiment also relied on feature cues, searching for the landmark to become reoriented.

During the second experiment, the researchers surmise, the volunteers had a positive experience using feature cues in the large room, so they kept on relying on the landmark in the smaller room to become reoriented. These findings indicate that the brain takes into account a number of factors, including the environment and our past experiences, while determining the best way to reorient us to our surroundings.
-end-
For more information about this study, please contact: Kristin Ratliff (krratliff@uchicago.edu)

Psychological Science is ranked among the top 10 general psychology journals for impact by the Institute for Scientific Information. For a copy of the article "Reorienting When Cues Conflict" and access to other Psychological Science research findings, please contact Barbara Isanski at 202-293-9300 or bisanski@psychologicalscience.org

Association for Psychological Science

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.