Supercomputer unravels structures in DVD materials

January 09, 2011

Jülich, 9 January 2011 - Although the storage of films and music on a DVD is part of our digital world, the physical basis of the storage mechanism is not understood in detail. In the current issue of the leading journal Nature Materials, researchers from Jülich, Finland, and Japan provide insight into the read and write processes in a DVD. This knowledge should enable improved storage materials to be developed. (DOI: 10.1038/NMAT2931)

Information is stored in a DVD in the form of microscopic bits (each less than 100 nanometres in size) in a thin layer of a polycrystalline alloy containing several elements. The bits can have a disordered, amorphous or an ordered, crystalline structure. The transition between the two phases lasts only a few nanoseconds and can be triggered by a laser pulse. Common alloys for storage materials such as DVD-RAMs or Blu-ray Discs contain germanium (Ge), antimony (Sb) und tellurium (Te) and are known as GST after the initials of the elements. The most popular alloys for DVD-RW are AIST alloys, which contain small amounts of silver (Ag) and indium (In) as well as antimony (Sb) and tellurium (Te).

"Both alloy families contain antimony and tellurium and appear to have much in common, but the phase change mechanisms are quite different", explains Dr. Robert Jones of Forschungszentrum Jülich, who has collaborated with an international team on the problem. In addition to experimental data and x-ray spectra from the Japanese synchrotron SPring-8, the world's most powerful x-ray source, the team used extensive simulations on the Jülich supercomputer JUGENE. The combination of experiment and simulations has enabled the structures of both phases to be determined for the first time and allowed the development of a model to explain the rapid phase change.

The phase change in AIST alloys proceeds from the outside of the bit, where it adjoins the crystalline surroundings, towards its interior. In Nature Materials, the team explains this using a "bond exchange model", where the local environment in the amorphous bit is changed by small movements of an antimony atom (see figure). A sequence of many such steps results in reorientation (crystallization), without requiring empty regions or large motions. The antimony atoms, stimulated by the laser pulse, have simply exchanged the strengths of the bonds to two neighbours, hence the name „bond exchange" model.

The team had clarified the phase transition in GST materials in earlier work (DOI: 10.1103/PhysRevB.80.020201). Here the amorphous bit crystallizes via nucleation, i.e. small crystallites formed in the interior grow rapidly until they covered the whole bit. The speed of the transition can be explained by observing that amorphous and crystalline phases contain the same structural units, "„ABAB" rings. These four-membered rings contain two germanium or antimony atoms (A) and two tellurium atoms (B) and can rearrange in the available empty space without breaking many atomic bonds.

The calculation of the structure of amorphous AIST is the largest yet performed in this area of research, with simulations of 640 atoms over the comparatively long time of several hundred picoseconds. Some 4000 processors of the Jülich supercomputer JUGENE were used for over four months in order to obtain the necessary precision. In addition to sheer computing power, however, experience in scientific computing and the simulation of condensed matter is essential. Jones notes: "Forschungszentrum Jülich is one of the few places where all these aspects come together."

The deeper theoretical understanding of the processes involved in writing and erasing a DVD should aid the development of phase change storage media with longer life, larger capacity, or shorter access times.
Model of crystallization of AIST alloy in a DVD.
Upper left: a laser pulse (hv arrow) causes motion of the central antimony atom (left), which then exchanges its bonds to two neighbours.
Upper right: The green vector sum of the three short red bonds changes.
Below: A sequence of such processes leads from the amorphous (left) to the crystalline form (right).
Illustration: Forschungszentrum Jülich

More information on Jülich solid-state research

Homepage of Nature Materials:

Further information on the topic at:

Dr. Robert Jones
Tel.: +49 2461 61-4202

Press contact:
Kosta Schinarakis
Tel.: +49 2461 61­4771

Forschungszentrum Jülich...
pursues cutting-edge interdisciplinary research addressing pressing issues facing society today while at the same time developing key technologies for tomorrow. Research focuses on the areas of health, energy and environment, and information technology. The cooperation of the researchers at Jülich is characterized by outstanding expertise and infrastructure in physics, materials science, nanotechnology, and supercomputing. With a staff of about 4 600, Jülich - a member of the Helmholtz Association - is one of the largest research centres in Europe.

Helmholtz Association

Related Laser Pulse Articles from Brightsurf:

Pulse-like jumps in atmospheric carbon dioxide occurred in glacial and early interglacial periods
Once only associated with colder climate conditions of the last glacial period, a new study finds that rapid, pulse-like increases in atmospheric carbon dioxide (CO2) also occurred during earlier, warmer interglacial periods.

Project creates more powerful, versatile ultrafast laser pulse
In Physical Review Letters, University of Rochester researchers describe a new device, the ''stretched-pulse soliton Kerr resonator,'' that creates an ultrafast laser pulse that is freed from the physical limits endemic to sources of laser light and the limits of the sources' wavelengths.

Pulse pressure: A game changer in the fight against dementia
Researchers unravel a pulse-pressure-induced pathway of dementia providing a new understanding on the pathogenesis of dementia.

Pulse oximetry monitoring overused in infants with bronchiolitis
Monitoring blood oxygen levels with continuous pulse oximetry is being overused in infants with bronchiolitis who do not require supplemental oxygen, according to a study by researchers at Children's Hospital of Philadelphia (CHOP).

I spy with my digital eye ... a tiger's breathing, a lion's pulse
A pilot study undertaken by researchers from the University of South Australia at Adelaide Zoo, has developed a new way to undertake basic health checks of exotic wildlife using a digital camera, saving them the stress of an anaesthetic.

How to take a picture of a light pulse
Until now, complex experimental equipment was required to measure the shape of a light pulse.

Laserphysics: At the pulse of a light wave
Physicists in the Laboratory for Attosecond Physics at Ludwig-Maximilians-Universitaet (LMU) in Munich and at the Max Planck Institute for Quantum Optics (MPQ) have developed a novel type of detector that enables the oscillation profile of light waves to be precisely determined.

Laser pulse creates frequency doubling in amorphous dielectric material
Researchers have demonstrated a new all-optical technique for creating robust second-order nonlinear effects in materials that don't normally support them.

A milestone in ultrashort-pulse laser oscillators
With the demonstration of a sub-picosecond thin-disk laser oscillator delivering a record-high 350-W average output power, physicists at ETH Zurich set a new benchmark and pave the path towards even more powerful lasers.

Pulse waves measured at the wrist uncover often-missed artery changes in menopausal women
Measuring a menopausal woman's pulse wave at her wrist can detect circulatory system changes that aren't evident with blood pressure readings.

Read More: Laser Pulse News and Laser Pulse Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to