New gene, new mechanism for neuron loss in hereditary spastic paraplegias

January 09, 2012

Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive weakness and spasticity (stiffness) of the legs. Mutations in more than 30 genes have been linked to HSPs. A team of researchers -- led by Stephan Züchner, at the University of Miami Miller School of Medicine, Miami; Evan Reid, at the University of Cambridge, United Kingdom; and Antonio Orlacchio, at the Centro Europeo di Ricerca sul Cervello-Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Italy -- has now associated mutations in the gene reticulon 2 with hereditary spastic paraplegia type 12. In addition to identifying a new HSP-associated gene, the team was able to uncover how the mutations in reticulon 2 are likely to cause neurodegeneration, providing new insight into this diverse group of inherited disorders.
-end-
TITLE: Mutations in the ER-shaping protein cause the axon-degenerative disorder hereditary spastic paraplegia type 12

AUTHOR CONTACT:

Stephan Züchner
University of Miami Miller School of Medicine, Miami, Florida, USA.
Phone: 305-243-2281; Fax: 305-243-2703; E-mail: szuchner@med.miami.edu.

Evan Reid
University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom.
Phone: 44-1223-762602; Fax: 44-1223-762640; E-mail: ealr4@cam.ac.uk.

Antonio Orlacchio
Centro Europeo di Ricerca sul Cervello-Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome, Italy.
Phone: 39-06-501703308; Fax: 39-06-501703312; E-mail: a.orlacchio@hsantalucia.it.

JCI Journals

Related Neurodegeneration Articles from Brightsurf:

Presented a program capable of detecting neurodegeneration biomarkers through magnetic
This tool is able to identify single-person neurodegeneration before the symptom's appearance, which could significate a more effective and personalized medicine.

Biomarker indicating neurodegeneration identified in the eye
A new study led by Boston Medical Center researchers indicates a well-known biomarker that serves as a marker for earlier diagnosis of neurodegenerative diseases is now detectable in the eye.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Gene yields insights into the causes of neurodegeneration
Cornell researchers including Fenghua Hu, associate professor in the Department of Molecular Biology and Genetics and member of the Weill Institute for Cell and Molecular Biology, are taking a closer look at the factors that cause Alzheimer's, FTLD and similar diseases.

When astrocytes attack: Stem cell model shows possible mechanism behind neurodegeneration
A new study published today in Neuron led by The New York Stem Cell Foundation (NYSCF) Research Institute's Valentina Fossati, Ph.D., creates astrocytes - an integral support cell in the brain -- from stem cells and shows that in disease-like environments, these normally helpful cells can turn into neuron-killers.

Gene-network analysis is a valuable new tool for understanding Alzheimer's disease
Researchers from Osaka University, Niigata University, and the National Center for Geriatrics and Gerontology have found that disruption of protein domain networks that are driven by the RAC1 gene is associated with behavioral and neurological symptoms of Alzheimer's disease.

Buck researchers discover how cellular senescence leads to neurodegeneration
Although a link has been established between chronic inflammation and neurodegenerative diseases, there have been many open questions regarding how cellular senescence, a process whereby cells that stop dividing under stress spew out a mix of inflammatory proteins, affects these pathologies.

Protein associated with ovarian cancer exacerbates neurodegeneration in Alzheimer's
Houston Methodist scientists identified a protein found in ovarian cancer that may contribute to declining brain function and Alzheimer's disease, by combining computational methods and lab research.

Objective subtle cognitive difficulties predict amyloid accumulation and neurodegeneration
Researchers report that accumulating amyloid protein occurred faster among persons deemed to have 'objectively-defined subtle cognitive difficulties' (Obj-SCD) than among persons considered to be 'cognitively normal,' offering a potential new early biomarker for Alzheimer's disease.

KBRI team reduces neurodegeneration associated with dementia in animal models
Korean research team made up of Dr. Hyung-Jun Kim and Shinrye Lee of KBRI, and professor Kiyoung Kim of Soonchunhyang University, found a new molecular mechanism of suppressing neuronal toxicity associateded dementia and Lou Gehrig's disease.

Read More: Neurodegeneration News and Neurodegeneration Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.