Minimalistic raiding parties of a slave-hunting ant crack castles

January 09, 2014

A group of scientists from the University of Mainz and the Senckenberg Museum of Natural History Goerlitz, headed by Susanne Foitzik and Bernhard Seifert, recently described a new slave-making ant species from the eastern USA. They baptized the new ant Temnothorax pilagens - from pilere (Latin): to pluck, plunder or pillage. The paper was published in the open access journal ZooKeys.

In contrast to the famous slave-hunting Amazon Ants whose campaigns may include up to 3000 warriors, the new slave-maker is minimalistic in expense, but most effective in result. The length of a "Pillage Ant" is only two and a half millimeters and the range of action of these slave-hunters restricts to a few square meters of forest floor. Targets of their raiding parties are societies of two related ant species living within hollow nuts or acorns. These homes are castles in the true sense of the word - characterized by thick walls and a single entrance hole of only 1 millimeter in diameter, they cannot be entered by any larger enemy ant.

An average raiding party of the Pillage Ant contains four slave-hunters only, including the scout who had discovered the target. Due to their small size the raiders easily penetrate the slave species home. A complete success of raiding is achieved by a combination of two methods: chemical camouflage and artistic rapier fencing.

The observed behavior is surprising as invasion of alien ants in an ant nest often results in fierce, usually mortal, fighting. Here, however, in several observed raids of the Pillage Ant, the attacked ants did not defend and allowed the robbers to freely carry away broods and even adult ants to integrate them into the slave workforce. The attacked ants did not show aggression and defence because the recognition of the enemy was prevented by specific neutralizing chemical components on the cuticle of the slave-hunters.

The survival of slave ant nests is an ideal solution from the perspective of slave hunters as it provides the chance for further raids during the next years. In other observed raids chemical camouflage was less effective - perhaps because the attacked ant population was strongly imprinted to a more specific blend of surface chemicals. In fact, a defence reaction was more probable if the attacked colony contained a queen that causes a strong imprinting of chemical recognition cues.

If defending, the chance of a slave ant to win a fight with a Pillage Ant is nearly zero. The attackers use their stinger in a sophisticated way, targeting it is precisely in the tiny spot where the slave ant's neck is soft-skinned. This stinging causes immediate paralysis and quick death and may result in high rates of casualties ranging from 5% to 100% of the attacked nests' population, whereas there are no victims among the attackers. If the Pillage Ants can conduct such successful raids with no or minimum own losses, there remains the question which factors regulate their population at a rather low level.
-end-
Original Source:

Seifert B, Kleeberg I, Feldmeyer B, Pamminger T, Jongepier E, Foitzik S (2014) Temnothorax pilagens sp. n. - a new slave-making species of the tribe Formicoxenini from North America (Hymenoptera, Formicidae). ZooKeys 368: 65. doi: 10.3897/zookeys.368.6423

Pensoft Publishers

Related Recognition Articles from Brightsurf:

Neural hardware for image recognition in nanoseconds
Usually, artificial intelligence is based on software. Scientists at TU Wien (Vienna) created intelligent hardware, which is much faster.

Facial recognition software has a gender problem
A new study of popular facial analysis services found they misidentified trans men as much as 38% of the time, mischaracterized non-binary individuals 100% of the time and appeared to be based on outdated gender stereotypes.

How neuronal recognition of songbird calls unfolds over time
A novel computational approach sheds new light on the response of neurons in the brain of a songbird when it hears and interprets the meaning of another bird's call.

New findings on human speech recognition at TU Dresden
Neuroscientists at TU Dresden were able to prove that speech recognition in humans begins in the sensory pathways from the ear to the cerebral cortex and not, as previously assumed, exclusively in the cerebral cortex itself.

Skeletal shapes key to rapid recognition of objects
In the blink of an eye, the human visual system can process an object, determining whether it's a cup or a sock within milliseconds, and with seemingly little effort.

A wearable vibration sensor for accurate voice recognition
Professor Kilwon Cho of Chemical Engineering and Professor Yoonyoung Chung of Electronic and Electric Engineering from POSTECH successfully developed a flexible and wearable vibration responsive sensor.

Speech recognition technology is not a solution for poor readers
Could artificial intelligence be a solution for people who cannot read well (functional illiterates) or cannot read at all (complete illiterates)?

Half a face enough for recognition technology
Facial recognition technology works even when only half a face is visible, researchers from the University of Bradford have found.

Widespread brain connections enable face recognition
Remembering a familiar face engages a wider network of brain regions than previously thought, according to a study of healthy men and women published in JNeurosci.

Bacteria use their enemy -- phage -- for 'self-recognition'
Scientists discovered that cells can distinguish themselves from closely related competitors through the use of a virus, and the harboring of phage in bacterial genomes benefits host cells when facing competitors in the environment.

Read More: Recognition News and Recognition Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.