Nav: Home

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors

January 09, 2017

A team of researchers at the University of Illinois at Urbana-Champaign has advanced gallium nitride (GaN)-on-silicon transistor technology by optimizing the composition of the semiconductor layers that make up the device. Working with industry partners Veeco and IBM, the team created the high electron mobility transistor (HEMT) structure on a 200 mm silicon substrate with a process that will scale to larger industry-standard wafer sizes.

Can Bayram, an assistant professor of electrical and computer engineering (ECE), and his team have created the GaN HEMT structure on a silicon platform because it is compatible with existing CMOS manufacturing processes and is less expensive than other substrate options like sapphire and silicon carbide.

However, silicon does have its challenges. Namely, the lattice constant, or space between silicon atoms, doesn't match up with the atomic structure of the GaN grown on top of it.

"When you grow the GaN on top, there's a lot of strain between the layers, so we grew buffer layers [between the silicon and GaN] to help change the lattice constant into the proper size," explained ECE undergraduate researcher Josh Perozek, lead author of the group's paper, "Investigation of structural, optical, and electrical characteristics of an AlGaN/GaN high electron mobility transistor structure across a 200mm Si(1 1 1) substrate," in the Journal of Physics D: Applied Physics.

Without these buffer layers, cracks or other defects will form in the GaN material, which would prevent the transistor from operating properly. Specifically, these defects -- threading dislocations or holes where atoms should be--ruin the properties of the 2-dimensional electron gas channel in the device. This channel is critical to the HEMTs ability to conduct current and function at high frequencies.

"The single most important thing for these GaN [HEMT] devices is to have high 2D electron gas concentration," said Bayram, about the accumulation of electrons in a channel at the interface between the silicon and the various GaN-based layers above it.

"The problem is you have to control the strain balance among all those layers--from substrate all the way up to the channel -- so as to maximize the density of the of the conducting electrons in order to get the fastest transistor with the highest possible power density."

After studying three different buffer layer configurations, Bayram's team discovered that thicker buffer layers made of graded AlGaN reduce threading dislocation, and stacking those layers reduces stress. With this type of configuration, the team achieved an electron mobility of 1,800 cm2/V-sec.

"The less strain there is on the GaN layer, the higher the mobility will be, which ultimately corresponds to higher transistor operating frequencies," said Hsuan-Ping Lee, an ECE graduate student researcher leading the scaling of these devices for 5G applications.

According to Bayram, the next step for his team is to fabricate fully functional high-frequency GaN HEMTs on a silicon platform for use in the 5G wireless data networks.

When it's fully deployed, the 5G network will enable faster data rates for the world's 8 billion mobile phones, and will provide better connectivity and performance for Internet of Things (IoT) devices and driverless cars.
-end-
The team, in collaboration with Veeco and IBM, conducted their research at the University of Illinois Micro + Nanotechnology Lab with support from the Air Force Office of Scientific Research.

University of Illinois College of Engineering

Related Silicon Articles:

To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
It would be difficult to overestimate the importance of silicon when it comes to computing, solar energy, and other technological applications.
Polymer-coated silicon nanosheets -- an alternative to graphene
Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene.
Bringing silicon to life
Living organisms have been persuaded to make chemical bonds not found in nature, a finding that may change how medicines and other chemicals are made in the future.
Bringing carbon-silicon bonds to life
Following a few tweaks, heme proteins can efficiently catalyze the formation of carbon-silicon bonds, which are not found in any known biological molecules, nor capable of being created through any existing biological processes.
What a twist: Silicon nanoantennas turn light around
Scientists at MIPT and their colleagues from ITMO University and the University of Texas at Austin have developed a nonlinear nanoantenna that can be used to scatter light in a desired direction by varying its intensity.
Obtaining of silicon nanowires becomes eco-friendly
Scientists from the Faculty of Physics, the Lomonosov Moscow State University have devised a technique of silicon nanowires synthesis.
Recharging on stable, amorphous silicon
Next-generation anodes for lithium ion batteries will probably no longer be made of graphite.
More stable qubits in perfectly normal silicon
The power of future quantum computers stems from the use of qubits, or quantum bits.
Silicon nanoparticles trained to juggle light
Silicon nanoparticles based devices would allow to transmit, reflect, or scatter incident light in a specified direction, depending on its intensity.
New silicon structures could make better biointerfaces
A team of researchers have engineered silicon particles one-fiftieth the width of a human hair, which could lead to 'biointerface' systems designed to make nerve cells fire and heart cells beat.

Related Silicon Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".