Nav: Home

Why high-dose vitamin C kills cancer cells

January 09, 2017

Vitamin C has a patchy history as a cancer therapy, but researchers at the University of Iowa believe that is because it has often been used in a way that guarantees failure.

Most vitamin C therapies involve taking the substance orally. However, the UI scientists have shown that giving vitamin C intravenously--and bypassing normal gut metabolism and excretion pathways--creates blood levels that are 100 - 500 times higher than levels seen with oral ingestion. It is this super-high concentration in the blood that is crucial to vitamin C's ability to attack cancer cells.

Earlier work by UI redox biology expert Garry Buettner found that at these extremely high levels (in the millimolar range), vitamin C selectively kills cancer cells but not normal cells in the test tube and in mice. Physicians at UI Hospitals and Clinics are now testing the approach in clinical trials for pancreatic cancer and lung cancer that combine high-dose, intravenous vitamin C with standard chemotherapy or radiation. Earlier phase 1 trials indicated this treatment is safe and well-tolerated and hinted that the therapy improves patient outcomes. The current, larger trials aim to determine if the treatment improves survival.

In a new study, published recently in the December issue of the journal Redox Biology, Buettner and his colleagues have homed in on the biological details of how high-dose vitamin C (also known as ascorbate) kills cancer cells.

The study shows that vitamin C breaks down easily, generating hydrogen peroxide, a so-called reactive oxygen species that can damage tissue and DNA. The study also shows that tumor cells are much less capable of removing the damaging hydrogen peroxide than normal cells.

"In this paper we demonstrate that cancer cells are much less efficient in removing hydrogen peroxide than normal cells. Thus, cancer cells are much more prone to damage and death from a high amount of hydrogen peroxide," says Buettner, a professor of radiation oncology and a member of Holden Comprehensive Cancer Center at the University of Iowa. "This explains how the very, very high levels of vitamin C used in our clinical trials do not affect normal tissue, but can be damaging to tumor tissue."

Normal cells have several ways to remove hydrogen peroxide, keeping it at very low levels so it does not cause damage. The new study shows that an enzyme called catalase is the central route for removing hydrogen peroxide generated by decomposing vitamin C. The researchers discovered that cells with lower amounts of catalase activity were more susceptible to damage and death when they were exposed to high amounts of vitamin C.

Buettner says this fundamental information might help determine which cancers and which therapies could be improved by inclusion of high-dose ascorbate in the treatment.

"Our results suggest that cancers with low levels of catalase are likely to be the most responsive to high-dose vitamin C therapy, whereas cancers with relatively high levels of catalase may be the least responsive," he explains.

A future goal of the research is to develop methods to measure catalase levels in tumors.
-end-
In addition to Buettner, the UI research team included Claire Doskey, Visarut Buranasudja, Brett Wagner, Justin Wilkes, Juan Du, and Joseph Cullen. The study was funded in part by grants from the National Institutes of Health (NIH), (CA169046, GM073929, CA148062, ES013661, ES005605, CA184051) and The Gateway for Cancer Research.

University of Iowa Health Care

Related Cancer Cells Articles:

Cancer cells send signals boosting survival and drug resistance in other cancer cells
Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.
A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Single gene encourages growth of intestinal stem cells, supporting 'niche' cells -- and cancer
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins researchers.
Prostate cancer cells grow with malfunction of cholesterol control in cells
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action
Researchers have identified a unique subset of these cells that exhibit hybrid characteristics of two immune cell types -- neutrophils and antigen-presenting cells -- in samples from early-stage human lung cancers.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Sleep hormone helps breast cancer drug kill more cancer cells
Tiny bubbles filled with the sleep hormone melatonin can make breast cancer treatment more effective, which means people need a lower dose, giving them less severe side effects.
Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor
Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.

Related Cancer Cells Reading:

A Beginner's Guide to Targeted Cancer Treatments
by Elaine Vickers (Author)

Killing Cancer With Spices - Revised: Inflammation - Cancer Stem Cells
by James A McCraw Jr (Author), James A McCraw (Author)

Local Nonsurgical Therapies for Stage I and Symptomatic Obstructive Non-Small-Cell Lung Cancer: Comparative Effectiveness Review Number 112
by U.S. Department of Health and Human Services (Author), Agency for Healthcare Research and Quality (Author)

Cancer Cell Culture: Methods and Protocols (Methods in Molecular Biology)
by Ian A. Cree (Editor)

Your Fourth Choice: Killing Cancer Cells with Paw Paw - that Little-Known Treatment that Grows on Trees
by John Clifton (Author)

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

The Transformed Cell
by Stephen A. Rosenberg (Author), John M. Barr (Author)

The Biology of Cancer
by Robert A. Weinberg (Author)

Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author)

Cancer Immunotherapy Principles and Practice
by Lisa H. Butterfield PhD (Editor), Howard L. Kaufman MD FACS (Editor), Francesco M. Marincola MD FACS (Editor)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".