Nav: Home

Landmark global scale study reveals potential future impact of ocean acidification

January 09, 2017

Ocean Acidification and the extent to which marine species are able to deal with low pH levels in the Earth's seas, could have a significant influence on shifting the distribution of marine animals in response to climate warming.

This is one the findings of a landmark new study that has taken a first-ever global scale integrative approach to the topic, bringing together population genetics, growth, shell mineralogy and metabolic data for marine snails found in the North Atlantic.

Published in this month's Nature Communications, the report, Regional adaptation defines sensitivity to future ocean acidification, reveals that populations at the northern and southern range edges are the most sensitive to ocean acidification, and the least likely to be able deal with significant implications for biogeography and diversity.

Scientists at the University of Quebec in Rimouski (UQAR), Canada, the University of Plymouth, the Plymouth Marine Laboratory, and the University of Birmingham, launched the project in 2010 with funding from a number of sources, including the Natural Environment Research Council's UK Ocean Acidification Research Programme.

Project lead Dr Piero Calosi, from the Department of Biology, Chemistry and Geography at UQAR, said: "It is well established that an organism's physiological response to temperature is a major determinant of species distributions, which in turn can dictate the sensitivity of populations and species to global warming. In contrast, little is known about how other major global change drivers, such as ocean acidification, will help shape species' distributions in the future."

The team sampled the common periwinkle Littorina littorea - an intertidal snail that has a wide latitudinal distribution - from six populations living along the European coastline of the North Atlantic, including warm temperate, cold temperate and subpolar regions.

Specimens were transported to the Marine Biology and Ecology Research Centre at the University of Plymouth and kept in aquaria containing either sea water representing current (pH 8.0) levels, or low pH predicted to occur for the year 2100 (pH 7.6).

Upon analysis, the scientists discovered a range of impacts including markedly higher rates of shell dissolution and degradation across all of the specimens maintained in the low pH condition, caused by the corrosive water conditions. This was particularly marked in the snails from the subpolar region, which have genetically adapted to the colder waters.

Where populations exhibited clear differences was in their metabolic responses to low pH conditions. The snails from warm temperate populations were found to decrease their metabolism as a trade-off between maintaining their physiological systems and their ability to grow, ultimately limiting the latter. Snails from the subpolar populations maintained their metabolic rates, but increased the amount of energy they put into shell mineralization. And the snails taken from the cold temperate waters were able to increase their metabolic rate, fuelling the maintenance of their growth and of their physiological systems to a better level than the other populations.

Dr Simon Rundle, from the School of Biological and Marine Sciences at University of Plymouth, said: "Such latitudinal differences in the metabolic 'strategies' may, in part, help explain the observed reduced growth towards range edges. Exposure to ocean acidification was shown to cause a reduction in the energy metabolism of the snails, and such reductions can lead to a reallocation of the energy budget away from fundamental fitness-related functions."

Professor Stephen Widdicombe, Head of Science in Marine Ecology and Biodiversity at Plymouth Marine Laboratory, said: "Together, the findings of this study suggest that the relative sensitivity of different populations of L. littorea to future ocean acidification are likely to vary considerably across its geographical range of extension in the North East Atlantic through local and regional adaptation, with populations closer to the range edges being most sensitive."

Dr Lucy Millicent Turner, from the University of Plymouth, added: "If ocean acidification selects against sensitive, range-edge genotypes, it could cause a reduction of genetic diversity levels that could have far-reaching consequences for the ability of these populations to respond and further adapt to other local and global stressors."

The results, say the authors, also demonstrate the risks of using single population studies when aiming to predict species' and community responses to global environmental drivers.

"We may be currently over- or underestimating the impact of different environmental changes in different climatic regions," concludes Dr Calosi, "with this having important implications for the development of directives and policies to promote the preservation of marine biodiversity under the ongoing global change."
-end-


University of Plymouth

Related Ocean Acidification Articles:

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.
Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.
Ocean acidification is damaging shark scales
Sharks have unusual type of scales referred to as 'denticles.' A research group from South Africa and Germany that includes Jacqueline Dziergwa and Professor Dr.
New threat from ocean acidification emerges in the Southern Ocean
Scientists investigating the effect of ocean acidification on diatoms, a key group of microscopic marine organisms, phytoplankton, say they have identified a new threat from climate change -- ocean acidification is negatively impacting the extent to which diatoms in Southern Ocean waters incorporate silica into their cell walls.
Coral skeleton crystals record ocean acidification
The acidification of the oceans is recorded in the crystals of the coral skeleton.
Ocean acidification boosts algal growth but impairs ecological relationships
Shrimp fed on marine algae grown in acidic water do not undergo a sex change that is a characteristic part of their reproductive life-cycle, report Mirko Mutalipassi and colleagues at Stazione Zoologica Anton Dohrn in Italy in a study publishing June 26 in the open-access journal PLOS ONE.
Ocean acidification 'could have consequences for millions'
Ocean acidification could have serious consequences for the millions of people globally whose lives depend on coastal protection, fisheries and aquaculture, a new publication suggests.
Southern Ocean acidification puts marine organisms at risk
New research co-authored by University of Alaska indicates that acidification of the Southern Ocean will cause a layer of water to form below the surface that corrodes the shells of some sea snails.
Ocean acidification harms cod larvae more than previously thought
The Atlantic cod is one of the most important commercial fish species in the world.
Business as usual for Antarctic krill despite ocean acidification
A new IMAS-led study has found that Antarctic krill are resilient to the increasing acidification of the ocean as it absorbs more C02 from the atmosphere due to anthropogenic carbon emissions.
More Ocean Acidification News and Ocean Acidification Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.