Targeting breast cancer through precision medicine

January 09, 2018

University of Alberta researchers have discovered a mechanism that may make cancer cells more susceptible to treatment. The research team found that the protein RYBP prevents DNA repair in cancer cells, including breast cancer.

"RYBP would make cancer cells more sensitive to DNA damage, which would make chemo or radiation therapy more effective," said Mohammad Ali, a postdoctoral fellow and the lead author of the study.

This discovery could potentially be another avenue for precision medicine, which would allow cancer treatment to be tailored to the patient's DNA. The new RYBP biomarker could predict which patients will benefit from specific types of chemotherapy. There may also be opportunities to develop drugs that treat cancer by activating RYBP in tumours, including breast cancer.

Ali found that breast cancer cells that have high levels of RYBP are more sensitive to DNA damage after radiation or drug treatment, including PARP inhibitors (inhibitors of the enzyme poly ADP ribose polymerase used in cancer treatment). This makes high-RYBP breast cancer cells respond better to some anticancer and radiation therapy.

The protein RYBP is best known to regulate gene expression, being a member of the large epigenetic protein complex PRC1. In previous research, this team of University of Alberta researchers found that PRC1 complex helps to repair DNA damage in cancer cells. To their surprise, Ali discovered that RYBP prevents DNA repair and, more specifically, the error-free repair process.

The research team then identified the mechanism at the molecular level and the exact part of the protein that is responsible for this phenomenon.

"Cancer cells that resist therapy are able to repair themselves despite the DNA damage. By preventing them from repairing, we could more effectively treat cancer," said Ali. "My dream is to take this from bench to bedside and allow physicians to screen patients for better outcomes."
-end-
The project was a collaboration between two U of A labs, led by Michael Hendzel from the Departments of Oncology and Cell Biology and Leo Spyracopoulos from the Department of Biochemistry. Spyracopoulos helped to identify the structural biology of this phenomenon. Both Hendzel and Spyracopoulos are members of the Cancer Research Institute of Northern Alberta.

The study is published in Cell Reports. Funding for this project was provided by the Alberta Cancer Foundation, Alberta Innovates, the Alberta Cancer Prevention Legacy Fund and the Canadian Institutes of Health Research.

University of Alberta Faculty of Medicine & Dentistry

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.