Nav: Home

Ultra-sensitive sensor with gold nanoparticle array

January 09, 2019

Scientists from the University of Bath (UK) and Northwestern University (USA) have developed a new type of sensor platform using a gold nanoparticle array, which is 100 times more sensitive than current similar sensors.

The sensor is made up of a series of gold disk-shaped nanoparticles on a glass slide. The team at Bath discovered that when they shone an infra-red laser at a precise arrangement of the particles, they started to emit unusual amounts of ultra violet (UV) light.

This mechanism for generating UV light is affected by molecules binding to the surface of the nanoparticles, providing a means of sensing a very small amount of material.

The researchers, from the University of Bath's Department of Physics, hope that in the future they can use the technology to develop new ultra-sensitive sensors for air pollution or for medical diagnostics.

Dr Ventsislav Valev, Royal Society Research Fellow and Reader in Physics at the University of Bath, led the work with Research Associate David Hooper.

He explained: "This new mechanism has great potential for detecting small molecules. It is 100 times more sensitive than current methods.

"The gold nanoparticle disks are arranged on a glass slide in a very precise array - changing the thickness and separation of the disks completely changes the detected signal.

"When molecules bind to the surface of a gold nanoparticle, they affect the electrons at the gold surface, causing them to change the amount of UV light they emit.

"The amount of UV light emitted would depend on the type of molecules that bind to the surface.

"This technique could enable ultra-sensitive detection of molecules in tiny volumes. It could in the future be used for detecting very low concentrations of biological markers for the early diagnostic screening for diseases, such as cancer."

The study has demonstrated the proof of principle for this new sensing mechanism. The team would next like to test the sensing of various types of chemicals and expects the technique to be available to other scientists to use within five years.
-end-
The nanoparticles were fabricated by researchers at Northwestern University, Illinois (USA).

David C. Hooper, Christian Kuppe, Danqing Wang, Weijia Wang, Jun Guan, Teri W. Odom, and Ventsislav K. Valev (2019) "Second Harmonic Spectroscopy of Surface Lattice Resonances" is published in Nano Letters DOI: 10.1021/acs.nanolett.8b03574

University of Bath

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".