Nav: Home

Overtones can provide faster data communication

January 09, 2019

For the first time researchers have succeeded in producing what are known as spin wave overtones. The technology paves the way for increasing the data transmission rate of wireless communication.

Spintronic oscillators are a kind of nano components in which spin waves are used to generate microwave signals in the gigahertz range. Spin wave overtones can be compared to the overtones (flageolets) that are used in music.

"For example, an experienced violinist knows exactly where to carefully place the finger on the string to dampen the fundamental frequency and instead allow the string to oscillate at one of its many overtones. This makes it possible to play tones that are much higher in frequency than the string's fundamental tone," says Johan Åkerman, a professor at the University of Gothenburg.

Along with colleagues in Gothenburg and Portugal, he has now demonstrated how to play and strengthen such overtones at the nano level. The researchers have produced spintronic oscillators that strengthen spin wave signals in several steps.

Surprising results

To the researchers' surprise, their new oscillators proved to be a completely unexpected and new phenomenon.

When the researchers increased the drive current, the signal showed a sharp jump in frequency: first, from the fundamental frequency of 9 GHz to 14 GHz and then a second jump to 20 GHz.

"The results are consistent with John Slonczewski's forgotten theoretical predictions of spin wave overtones," says Åkerman.

In a 1999 article, physicist Slonczewski lays out the basis for how the spin waves generated in spin electronic oscillators are described. He mentions then that his model also supports the generation of much higher frequencies using overtones.

"While John Slonczewski's article inspired a rapidly growing research field within spintronic oscillators, there have been no further discussions of overtones at all, nor have they been tested experimentally until now. Our experiment shows that it is possible to create several different overtones in spintronic oscillators, which permits extremely large and fast frequency jumps to increase the data transmission rate of wireless communication."

The discovery also makes it possible for researchers to generate very high microwave frequencies with short wavelengths for use in spintronics and magnonics.

"While the wavelength of the fundamental tone is about 500 nanometres, the wavelength of the demonstrated third overtone is as short as 74 nanometres. Future studies on smaller oscillators should be able to generate spin waves down to 15 nanometres with frequencies up to 300 GHz. That is why the potential for extremely high-frequency spintronics and magnonics is enormous," says Åkerman.

Higher frequency leads to faster data communication in wireless transmission, but it can also provide better automotive radar for self-driving cars.

Johan Åkerman's research team from the University of Gothenburg has collaborated with researchers at International Iberian Nanotechnology Laboratory (INL) in Portugal.

The article was recently published in Nature Communications and the work has also been invited to be presented at the International Workshop on Spintronics at Tohoku University, and at the MMM-Intermag 2019 Conference in Washington D.C.
Contact: Johan Åkerman, professor of physics at the University of Gothenburg. Telephone: +46 (0)31-786 91 47, mobile: +46 (0)707-10 43 60 e-mail:

Title: "Spin transfer torque driven higher-order propagating spin waves in nano-contact magnetic tunnel junctions."

Digital publication:

University of Gothenburg

Related Spintronics Articles:

Patented concept from Halle: novel, high-performance diodes and transistors
Today's computer processors are increasingly pushed to their limits due to their physical properties.
Spintronics: Physicists discover new material for highly efficient data processing
A new material could aid in the development of extremely energy efficient IT applications.
Researchers get first microscopic look at a tiny phenomenon with big potential implications
Matter behaves differently when it's tiny. At the nanoscale, electric current cuts through mountains of particles, spinning them into vortexes that can be used intentionally in quantum computing.
A novel graphene-matrix-assisted stabilization method will help unique 2D materials to become a part
Scientists from Russia and Japan found a way of stabilizing two-dimensional copper oxide (CuO) materials by using graphene.
Unlocking magnetic properties for future faster, low-energy spintronics
An Australian collaboration combines theory and experimental expertise, discovering new magnetic properties of two-dimensional Fe3GeTe2 (FGT) towards spintronic applications promising faster, more efficient computing.
More Spintronics News and Spintronics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...